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Abstract

This thesis deals with text processing applications examining methods suitable for

less-resourced and agglutinative languages, thus presenting accurate preprocessing

algorithms.

The first part of this study describes morphological tagging algorithms which can

compute both the morpho-syntactic tags and lemmata of words accurately. A tool (called

PurePos) was developed that was shown to produce precise annotations for Hungarian

texts and also to serve as a good base for rule-based domain adaptation scenarios.

Besides, we present a methodology for combining tagger systems raising the overall

accuracy of Hungarian annotation systems.

Next, an application of the presented tagger is described that aims to produce

morphological annotation for speech transcripts, and thus, the first morphological

disambiguation tool for spoken Hungarian is introduced. Following this, a method is

described which utilizes the adapted PurePos system for estimating morpho-syntactic

complexity of Hungarian speech transcripts automatically.

The third part of the study deals with the preprocessing of electronic health records.

On the one hand, a hybrid algorithm is presented for segmenting clinical texts into words

and sentences accurately. On the other hand, domain-specific enhancements of PurePos

are described showing that the resulting tagger has satisfactory performance on noisy

medical records.

Finally, the main results of this study are summarized by presenting the author’s

theses. Further on, applications of the methods presented are listed which aims

less-resourced languages.
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1
Introduction

1.1 Preprocessing in natural language technology

Natural language technology is present in our everyday life helping interactions between

humans and computers. As such, it is a field of computer science and linguistics, which

involves understanding and generating of human (natural) languages. Concerning text

processing, which is a major part of language technology, several structural levels can

be identified [22]:

Text segmentation: basic units of texts are separated, thus token and sentence

boundaries are recognized (referred as tokenization sentence boundary detection

(SBD)).

Morphological parsing: structural units of words are identified (morphological

analysis), then tokens are unambiguously classified by their morpho-syntactic

behavior (part-of-speech tagging).

Syntactic parsing: sentences are broken down into building blocks regarding their

form, function or syntactic relation to each other.

Semantic analysis methods deal with the meaning of texts.

1



1.2 A solved problem?

Practical applications often build parsing chains, pipelining such components one

after another. Two preprocessing steps are indispensable for most of the cases. Since

words and sentences are the basic units of text mining applications, segmentation must

be performed first. Beside this, lemmata and part-of-speech (PoS) labels of words

are also necessary components of such systems, thus morphological parsing should be

carried out next.

Moving on, such pipelined architectures may easily result in erroneous output,

since error propagation is often a notable phenomenon. Obviously, the more accurate

preprocessing modules are employed, the better analyses are yielded. Therefore, the

high precision of such methods is crucial.

1.2 A solved problem?

Text segmentation is composed of two parts: tokenization and sentence boundary

identification. The first one brakes texts into meaningful elements (called tokens) usually

utilizing pattern matching methods. Next, sentence boundaries are often recognized by

applying linguistic rules or using machine learning algorithms (cf. [23]). In most of

the cases, these solutions are fine-tuned for a specific task, hence resulting in accurate

tools, i.e. the problem is considered to be solved. However, these algorithms are often

language and domain specific, thus numerous scenarios exist (such as the case of noisy

texts) on which current approaches fail (see [24]).

Having identified the tokens themselves, the PoS tags of words are assigned. In

practice, these solutions mostly build on data-driven algorithms requiring large amount

of training data. As a result, such approaches are restricted by the corpus they model.

Further on, most of the tagging algorithms target English first, thus ignoring serious

problems caused by languages with rich morphology. For instance, agglutinative

languages (such as Hungarian) have rich inflection systems. Words are formed joining

affixes to the lemma, thus affecting their morpho-syntactic behavior. In that way,

such languages need much larger (morpho-syntactic) tag-sets compared to English [25].

2



1.3 Aims of the study

Furthermore, lemmatization of words cannot be carried out using simple suffix-stripping

methods. This means, disambiguating among part-of-speech labels becomes insufficient

(see e.g. [26]), full morphological tagging algorithms are required that assign complete

morpho-syntactic tags and compute lemmata as well.

All in all, language technology needs preprocessing methods which handle

morphologically rich languages efficiently and perform well on less-resourced scenarios

at the same time.

1.3 Aims of the study

The aim of this study is twofold. Firstly, morphological tagging algorithms are

investigated which can handle agglutinative languages and is applicable for domain

adaptation scenarios effectively. Secondly, methods suitable for a less-resourced domain

are examined.

First, we were interested in how existing methods can be applied for the

full morphological tagging of agglutinative languages yet remaining suitable for

domain adaptation tasks. Chapter 2 considers many aspects of this question. Section

2.2.2 focuses on the full disambiguation problem, in particular on the question of

how one can create a morphological tagging architecture that is accurate on

agglutinative languages and also flexible enough to be used in rule-based domain

adaptation tasks. Further on, this section also investigates how a method can be

created which computes roots of words (either seen or unseen previously by the

algorithm) effectively. On the one hand, an efficient lemmatizer was developed

which integrates a morphological analyzer (MA) and employs several stochastic models

as well. On the other hand, an efficient tagging tool (PurePos) is designed that is

customizable for diverse domains. Our system was tested on a general Hungarian corpus

showing its state-of-the-art accuracy. In addition, hybrid components of the tool were

also examined through an annotation task showing their conduciveness.

3



1.4 Methods of investigation

Following this, Section 2.3 examines how one can improve full morphological

taggers through system combination to raise the overall annotation quality.

We developed an architecture for combining morphological taggers for agglutinative

languages, which improves tagging quality significantly.

Beside tagging methods, their applications also played a central role in this study.

We were interested in creating a tagger tool for speech transcripts which can help

linguists in their research. Chapter 3 presents adaptation methods resulting in the

first morphological tagging chain for spoken Hungarian. Following this, an application

of this system is described which estimates morpho-syntactic complexity of speech

transcripts of children automatically.

The third part of the dissertation (Chapter 4) deals with problems of Hungarian

electronic health records. In particular, Section 4.2 investigates how one can develop

a text segmentation algorithm which can handle imperfect sentence and word

boundaries in Hungarian medical texts. Our contribution in this field is twofold. First,

it was shown that all the available tools fail on segmenting such texts. Next, an accurate

methodology was proposed identifying sentence and token boundaries precisely.

Following this, Section 4.3 looks into the questions what the main pitfalls of

morphological taggers are which target noisy clinical texts and how PurePos can

be adapted for tagging medical texts properly. This part introduces a detailed

error analysis of the tool showing that abbreviations and out-of-vocabulary (OOV)

words cause most of the errors. In addition, domain-specific adaptation techniques are

presented improving the annotation quality significantly.

1.4 Methods of investigation

In the course of our work, diverse corpora were used. First, the Szeged Corpus [27]

was employed for developing and evaluating general tagging methods. Further on, these

algorithms were tested on Old and Middle Hungarian [12] texts as well. Next, methods

for speech transcripts were analyzed on the HUKILC corpus [2].

4



1.4 Methods of investigation

Beside existing ones, two new corpora were created manually from electronic health

records. These texts enabled us to design algorithms for the clinical domain. Concerning

their usage, texts were usually split into training, development and test sets.

As regards methods used, most of our work resulted in hybrid solutions. On the one

hand, we built on symbolic morphological analyzers and rule-based (pattern matching)

components. On the other hand, stochastic and machine learning algorithms were

heavily utilized as well.

Morphological analyzers played a central role in our study, since their usage is

inevitable for morphologically complex languages. In most of the cases we employed

(adapted versions [12, 28, 16]) of Humor [29, 30, 31] but the MA of magyarlanc

[32] was used as well.

As regards machine learning algorithms, tagging experiments were based on hidden

Markov models [33, 34]. Our approach built on two well-known tools which are Brant’s

TnT [35] and HunPos [36] from Halácsy et al. Besides, other common methods such

as n-gram modeling, suffix-tries and general interpolation techniques were utilized as

well. Further on, the proposed combination scheme applied instance-based learning

[37] implemented in the Weka toolkit [38].

Beside supervised learning, unsupervised techniques were employed as well.

Identification of sentences was performed using the collocation extractions measure of

Dunning [39]. In fact, we based on the study of Kiss and Strunk [40], which employs

scaling factors for the logλ ratio.

The effectiveness of algorithms was measured calculating standard metrics. The

performance of taggers were computed with accuracy as counting correct annotations

of tokens and sentences. However, if the corpus investigated contained a considerable

amount of punctuation marks, they were not involved in the computation. For

significance tests, we used the paired Wilcoxon signed rank test as implemented in the

SciPy toolkit [41]. Next, the improvement of taggers was examined calculating relative

error rate reduction.

5



1.4 Methods of investigation

Simple classification scenarios were evaluated computing precision, recall and

F-score for each class. Furthermore, overall accuracy values were provided as well.

Finally, numeric scores were compared with mean relative error [42] and Pearson’s

correlation coefficient [42].

6



2
Full morphological tagging methods

2.1 Motivation

Is morphological tagging really a solved task? Although several attempts have been

made to develop tagging algorithms since the 1960’s (e.g. [43, 44]), those were focusing

mainly on English word classes. Further on, such approaches usually concentrated only

on increasing PoS taggers’ accuracy on news text, while e.g. problems of other domain

are still barely touched. In addition, recently there has been an increasing interest

on processing texts in less-resourced languages, which are morphologically rich (cf.

[45, 46, 47, 48]). Most of them are highly inflectional or agglutinative, posing new

challenges to researchers. This study gives an account of the morphological tagging of

agglutinating languages by investigating the case of Hungarian.

First of all, a remarkable difficulty for tagging agglutinative languages is data

sparseness. If we compare (cf. [49]) languages like Hungarian or Finnish with English in

terms of the coverage of vocabularies by a corpus of a given size, we find that although

there are a lot more different word forms in the corpus, these still cover a much smaller

percentage of possible word forms of the lemmata in the corpus than in the case of

English. On the one hand, a 10 million word English corpus has less than 100,000

different word forms, while a corpus of the same size for Finnish or Hungarian contains

well over 800,000. On the other hand, while an open class English word has maximally

7



2.1 Motivation

4–6 different inflected forms, it has several hundred or thousand different productively

suffixed forms in agglutinative languages. Moreover, there are much more disparate

possible morpho-syntactic tags for such languages than in English (several thousand vs.

a few dozen). Thus, the problem is threefold:

1. an overwhelming majority of possible word forms of lemmata occurring in the

corpus is totally absent,

2. words in the corpus have much fewer occurrences, and

3. there are also much fewer examples of tag sequences (what is more, several

possible tags may not occur in the corpus at all).

Another issue for morphologically rich languages is that labeling words with only

their part-of-speech tag is usually insufficient. Firstly, complex morpho-syntactic

features carried by the inflectional morphemes can not be represented by tag-sets having

only a hundred different labels. Secondly, morpho-syntactic tagging is still just a

subtask of full morphological disambiguation. In addition to a full morpho-syntactic

tag, lemmata of words also need to be identified. Although several studies have

revealed that dictionary- or rule-based lemmatization methods yield acceptable results

for morphologically not very rich languages like English [50, 51], ambiguity is present

in the task for highly inflectional and agglutinative languages [52, 53, 54]. Yet, most of

the taggers available only concentrate on the tag but not the lemma, thus doing just half

of the job.

Looking into the details, there are annotation schemes (e.g. MSD codes of the

Szeged Corpus [27]) which eliminate the ambiguity of the lemmatization task by the

tag-set they use. This means that roots of words should be calculated undoubtedly

from the morphological categories assigned. Nevertheless, lemma computing still

can be important problem in these cases. Tagger tools operating without any

prior morphological knowledge still have to figure out how to derive lemmata from

morphological labels. This means that they have to infer knowledge about the inner

structures of words. What is more, the same issue also holds when a MA is used,

8



2.1 Motivation

but the word is unknown to that analyzer system and is not seen in the training data.

For handling these cases, morphological disambiguator tools should employ guessing

methods dealing effectively with such out-of-vocabulary words.

Moving on, lemmatization is a more important problem when the annotation scheme

does not restrict the lemmatization task as seen above. As regards Hungarian, one can

reveal notable ambiguity investigating the Szeged Corpus [27] with the Humor analyzer

[29, 30, 31]. First of all, more than 16% of words are ambiguous by their lemmata,

furthermore, if we aggregate morphological analyses by their morpho-syntactic label,

4% of the tokens still have more than one roots. An example is a class of verbs that

end in -ik in their third person singular present tense indicative, which is the customary

lexical form (i.e. the lemma) of verbs in Hungarian. Further on, another class of verbs

has no suffix in their lemma. The two paradigms differ only in the form of the lemma, so

inflected forms can belong to the paradigm of either an -ik final or an non-ik final verb

and many verbs. E.g. internetezem ‘I am using the internet’ can have two roots for the

same morpho-syntactic tag: internetez and internetezik ‘to use the internet’. Another

example is the class of verbs which third person singular past causative case overlap

with the singular third person past form. For example festette ‘he painted it/he made

it to be painted’ has two possible roots for the same tag: festet ‘he makes someone to

paint‘ and fest ‘he paints’.

Besides, a further issue is that most of the tagging approaches perform well

only when a satisfactory amount of training data is available. In addition, several

agglutinative languages and especially their subdomains lack annotated corpora.

Concerning Hungarian, even though the Szeged Corpus contains well over 80,000

sentences, there are several important domains (such as the case of biomedical texts)

which miss manually annotated documents. Therefore, pure stochastic methods that are

trained on this corpus and target other genres may result in low quality annotation.

In this chapter, we present an effective morphological tagging algorithm that has

a language independent architecture being capable of annotating sentences with full

morpho-syntactic labels and lemmata. The presented method has state-of-the-art

9



2.2 Hybrid morphological tagging methods

performance for tagging Hungarian. Most importantly, it is shown that our tool can be

used effectively in resource-scare scenarios, since it yields high quality annotations even

when a limited amount of training data is available only. Finally, tagger combination

experiments are presented raising further the accuracy of Hungarian morphological

tagging.

2.2 Hybrid morphological tagging methods

This section surveys related studies first. Following this, a new hybrid morphological

tagging algorithm is described detailing its components and architecture. Finally, the

presented tool is evaluated through several experiments showing its high performance.

2.2.1 Background

First of all, we overview how morphological tagger systems are typically built up. Since

there are just a few tools performing the full task, we also review PoS tagging attempts

for morphologically rich languages. In addition, previous approaches for Hungarian are

introduced as well.

2.2.1.1 Full morphological tagging

There has been insufficient discussion about full morphological tagging in recent studies

of natural language technology. The reason behind this is that most of the attempts

concentrate on morphologically not very rich languages (such as English), where

PoS tagging is generally sufficient, and the ambiguity of the lemmatization task is

negligible. Furthermore, there are studies (following English approaches) which ignore

lemmatization (such as [55, 56, 57]) even for highly inflectional languages.

Nevertheless, approaches on full morphological tagging can be grouped depending

on their relationship to lemmatization.
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1. First of all, numerous researchers propose a two stage model, where the first

phase is responsible for finding full morpho-syntactic tags, while the second

one is for identifying lemmata for (word, tag) pairs. For instance, Erjavec and

Dzeroski decompose the problem [58] by utilizing a trigram tagger first, then

applying a decision list lemmatizer. Further on, Agič et al. combine [59] an

HMM-based tagger with a data-driven rule-based lemmatizer [26]. Even though

such combinations could have error propagation issues, they usually result in

well-established accuracy.

2. Another feasible approach is to treat the tagging task as a disambiguation problem.

Such methods utilize morphological analyzers to generate annotations candidates,

then employ disambiguation methods for selecting correct analyses. These

architectures are typical e.g. for Turkish attempts (cf. [53, 60]). A drawback

of this approach is that the disambiguation component depends heavily on the

language-dependent analyzer used.

3. Finally, the problem can be handled as a unified tagging task. An example is

the Morfette system [54]. It employs a joint architecture for tagging words both

with their tags and lemmata considering lemmatization as a labeling problem.

The tool represents a lemma class as a transformation sequence describing string

modifications from the surface form to the root. Further on, Morfette utilizes

the maxent framework and employs separate models for each of the subtasks yet

using a joint beam search decoder. Another similar method was presented by Laki

and Orosz [7] recently. Their system (HuLaPos) merges PoS labels with lemmata

transformation sequences to a unified tag, which is then learned by the Moses

statistical machine translation framework [61]. Therefore, HuLaPos can translate

sentences to sequences of labels. These joint approaches are usually language

independent, however, they can either be slow to train or inaccurate due to the

increased search space they use.
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Considering lemmatization (case 1 above), the task can be easily accomplished by

utilizing linguistic rules or lemma dictionaries. However, the creation of such resources

is time-consuming. Next, a general baseline method is to select the most frequent

lemmata for each (word, tag) relying on the training data (as in [32]). Despite its

simplicity, this method usually results in mediocre precision systems. Further on,

employing advanced machine learning (ML) algorithms is also a viable approach. E.g.

Plisson et al. apply ripple down rule induction algorithms [51] for learning suffix

transformations. Even though they report about good results, their attempt ignores the

dependency between tags and lemmata. Next, Jongejan and Dalianis generate decision

lists (cf. CST method [26]) for handling morphological changes in affixes. However,

their system is optimized for inflecting languages exploring complex changes in word

forms.

2.2.1.2 Morpho-syntactic tagging of morphologically rich languages

Next we describe how well-known data-driven PoS tagging methods are applied for

morphologically rich languages focusing on issues yielded by the complexity of the

morphology. In doing so, only data-driven models are reviewed investigating techniques

for managing

1. the increased number of out-of-vocabulary word forms and

2. the large complexity of the tag-set.

While numerous attempts have been published for tagging Polish recently [62, 63,

64, 65], performance of these tools are below the average. Most of these solutions (e.g.

[65]) use morphological analyzers to get morpho-syntactic tag candidates to reduce the

search space of the decoder used. Further on, tiered tagging is another widely utilized

technique [65]. This method resolves complex tags by computing its parts one after

another. Considering ML algorithms used, the range of applications is wide. Beside an

adaptation of Brill’s tagger [64], C4.5 decision trees [63], memory-based learning [66]

and CRF models are employed [65] as well.
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Moving on, the first successful attempt to analyze Czech was published by Hajič and

Hladká [55] basing on a discriminative model. Their approach uses a morphological

analyzer and builds on individual prediction models for ambiguity classes. Actually, the

best results for Czech are obtained using the combination of numerous systems [67].

In their solution, three different data-driven taggers (HMM, maximum entropy and

averaged perceptron) and further symbolic components are utilized as well. A MA

computes the possible analyses, while the rule-based disambiguator tool removes

agrammatical tag sequences.

The flexible architecture of the Stanford tagger [68] also allows the integration

of various morphological features thus enabling its usage for morphologically rich

languages. An example is the Bulgarian tool [69] (by Georgiev et al.), which uses

a morphological lexicon and an extended feature set. Further on, applications of

trigram tagging methods [35, 36] have been demonstrated (for example Croatian [59],

Slovenian [59] and Icelandic [70]) to be effective as well. These systems achieve high

accuracy utilizing large morphological lexicons and decent unknown word guessing

algorithms.

Considering agglutinative languages, the usage of finite-state methods is

indispensable for handling the huge number of possible wordforms. E.g. Silferberg and

Lindén introduce a trigram tagger for Finnish [57] that is based on a weighted finite-state

model. As regards Turkish, Daybelge and Cicelki describe a system [71] employing

also a finite-state rule-based method. However, most taggers for agglutinative languages

use hybrid architectures incorporating morphological analyzers into stochastic learning

methods. Examples are the perceptron-based application of Sak et al. [53] and the

trigram tagging approach of Dilek et al. [60].

Recent approaches include the results of the Statistical Parsing of Morphologically

Rich Languages workshop [45, 46, 47, 48]. First, Le Roux et al. [72] presented an

accurate parser for Spanish relying on the morphological annotations of Morfette [54].

Further on, Bengoetxea et al. [73] showed that tagging quality greatly influences the

accuracy of parsing Basque. For this, they used a tagger based on hidden Markov models
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combined with a symbolic component. Next, Maier et al. [74] investigated the effect of

the tag-set granularity on processing German. They concluded, that PoS tagging can be

performed more accurately using less granular tags, while both the coarse-grained and

too fine-grained morpho-syntactic labels decrease the parsing performance.

Most recently, Bohnet et al. have introduced methods [75] for the joint

morphological and syntactic analysis of richly inflected languages. Their best

solutions involve the usage of morphological analyzers and word clusters, resulting in

significant improvements on parsing of all the tested languages. However, their method

requires syntactically annotated texts restricting the applicability of the algorithm for

less-resourced domains. Further on, Müller et al. [76] improved on CRF-based methods

to apply them effectively on the morpho-syntactic tagging of morphologically rich

languages. The proposed system uses a coarse-to-fine mapping on tags for speeding-up

the training of the underlying discriminative method. In this way, their solution can go

beyond general 1st-order models thus resulting in increased accuracy. Their best systems

utilize complex morpho-syntactic features and outputs of morphological analyzers as

well.

To summarize, effective methods for morphologically complex languages rely on

either a discriminative or a generative model. Such taggers generally use morphological

lexicons or analyzers to handle the large vocabulary of the target language. Further

on, tagging of unknown words is a crucial problem being managed by either guessing

modules or rich morphological features.

2.2.1.3 The case of Hungarian

As regards Hungarian PoS tagging, the first attempt was performed by Megyesi [77]

adapting Brill’s transformation-based method [78]. Since she did not use any

morphological lexicon, her approach resulted in moderate success. Similarly, Horváth

et al. investigated [79] only pure machine learning algorithms (such as C4.5 or instance

based learning) resulting in low accuracy systems. Three years later, the first promising

approach was presented by Oravecz and Dienes [49] utilizing TnT [35] with a weighted
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finite-state lexical model. In 2006, Halácsy et al. investigated an augmented maxent

model [80] in combination with language specific morphological features and a MA.

In that study, the best result was achieved by combining the latter model with a

trigram-based tagger. Later, they created the HunPos system [36], which reimplements

and extends TnT. Their results (with a morphological lexicon) has been shown to

be as efficient as the one of Oravecz and Dienes [49]. Next, Kuba et al. applied

boosting and bagging techniques for transformation based learning [81]. Although

they managed to reduce the error rate of the baseline tagger, their results lag behind

previous approaches. Recently, Zsibrita et al. published magyarlanc [32], a natural

language processing chain specially designed for Hungarian. They adapted the Stanford

tagger [68] in two steps. First, to train the underlying discriminative method effectively,

a tag-transformation step is applied reducing the number of morpho-syntactic labels.

Next, the tool utilizes a morphological analyzer as well to enhance and speed up the

disambiguation process.

Most of the previous approaches concentrated on the morpho-syntactic tagging task,

thus there are only three tools which performs lemmatization as well and can be applied

to Hungarian.

1. magyarlanc, which builds on a maxent model and employs a rule-based lemma

guesser system.

2. HuLaPos, which applies machine translation methods for the tagging task.

3. Morfette, which uses two maximum entropy models for jointly decoding both the

labels and lemmata.

Although, magyarlanc provides accurate annotations, the tool has two weaknesses

which inhibit its applications on corpora having different annotation schemata. It does

not provide a straightforward way to train and contains built-in annotation-specific

components. Further on, machine learning algorithms behind HuLaPos and Morfette

need a large amount of training data to produce high accuracy, therefore it can be
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troublesome to apply them on less-resourced domains. Finally, none of these tools

contain components which would allow them to be adjusted for new domains without

retraining them.

This chapter introduces a new morphological tagging tool, which uses simple

trigram methods and employs a pluggable morphological analyzer component. It differs

from existing approaches in having a language and tag-set independent architecture

yet producing high accuracy and also being flexible enough to be used in rule-based

domain-adaptation scenarios. PurePos is designed to operate on morphologically rich

languages and resource-scarce scenarios, providing accurate annotations even when a

limited amount of training data is available only. Furthermore, our approach is shown to

have very high accuracy on general Hungarian.

2.2.2 The full morphological tagging model

The architecture of PurePos (cf. Figure 2.1) is composed of multiple components. The

data flow starts from a MA providing word analyses as (lemma, tag) pairs. Next, a

trigram model is used to select morpho-syntactic labels for words. Then, lemmatization

is carried out using both statistical and linguistic components.

Figure 2.1 The architecture of the proposed method

In the following, we present its components making the morphological tagging

effective. Underlying statistical models are introduced first, then we show how symbolic

algorithms are incorporated.
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2.2.2.1 The PoS tagging model

Figure 2.2 Part-of-speech tagging in the proposed system

PurePos builds on HMM-based methods [33, 34] introduced in TnT [35] and HunPos

[36], allowing it to be fast, simple and effective at the same time. Our implementation

(similarly to HunPos) allows the user to set the tagging order individually for both the

contextual (n1) and lexical model (n2). The method presented (see Figure 2.2) selects

the best fitting tm
1 morpho-syntactic label sequence for the m long wm

1 sentence using

individual contextual and lexical probabilities of tags and words (in the ith position):

argmaxtm
1

m

∏
i=1

P(ti|t i−n1
i−1 )P(wi|t i−n2

i−1 ) (2.1)

Its contextual model is computed with simple n-gram language-modeling techniques

(cf. Equation 2.2) employing maximum likelihood estimation (MLE) (see Equations 2.3

and 2.4)1. Uni-, bi- and trigram estimates are combined with deleted interpolation thus

calculating λk weights as suggested by Brants [35]. Even though the order of the model

is usually set to 3, it is adjustable in practice.

P(ti|t i−n1
i−1 )≈

n1−1

∑
k=0

λkP̂(ti|t i−k
i−1) (2.2)

P̂(ti|t i−k
i−1) =

c(t i−k
i )

c(t i−k
i−1)

(k > 0) (2.3)

1Where N denotes the size of the tag-set, while c(x) marks the number of x elements in the training
data.
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P̂(ti) =
c(ti)
N

(k = 0) (2.4)

Next, the lexical model (P(wi|t i−n2
i−1 ) of our method is composed of two components.

The first one handles tokens previously seen in the training data, while the second

guesses labels for unknown words. In fact, each subsystem is doubled (as it is in [35,

36]) maintaining separate models for uppercase and lowercase words.

Handling of previously seen words is carried out approximating P(wi|t i−n2
i ) with

word-tag co-occurrences:

P(wi|t i−n2
i )≈

n2−1

∑
k=0

λkP̂(wi|t i−k
i ) (2.5)

P̂(wi|t i−k
i ) is calculated with maximum likelihood estimation, while deleted

interpolation is applied with λk weights. As in the contextual model, k is set to 2 in

applications.

As regards tagging of unknown words, we use – in accordance with Brants – the

distribution of rare2 tokens’ tags for estimating their PoS label. Since suffixes are strong

predictors for tags in agglutinative languages, we use the last l letters ({sn−l+1 . . .sn})

for estimating probabilities. Successive abstraction is utilized in our tool as described in

[34, 35]. This method calculates the probability of a t tag recursively using suffixes with

decreasing lengths:

P(t|sn−l+1, . . . , ln)≈
P̂(t|sn−l+1, . . . ,sn)+θ P̂(t|sn−l, . . . ,sn)

1+θ
(2.6)

θ parameters are computed utilizing the standard deviation of the maximum

likelihood probabilities of all the k tags:

2Rare words are considered to be those that occur less than 10 times in the training data.
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θ =
1

k−1

k

∑
j=1

(P̂(t j)−P)2 (2.7)

where

P =
1
k

k

∑
j=1

P̂(t j) (2.8)

Finally, MLE is employed for calculating both P̂(t j) and P̂(t|sn−l+1, . . . ,sn).

Concerning decoding, beam search is utilized, since it can yield multiple tagging

sequences at the same time. In that way, the tool is also able to produce tagging

scores of sentences (2.9) allowing us to incorporate further components using partly

disambiguated word sequences.

Score(wm
1 , t

m
1 ) = log

m

∏
i=1

P(wi|ti, ti−1)P(ti|ti−1, ti−2)P(li|ti,wi) (2.9)

2.2.2.2 The lemmatization model

Figure 2.3 The data flow in the lemmatization component

Lemmatization is performed in two steps (cf. Figure 2.3). First, candidates are generated

for (word, morpho-syntactic tag) pairs. If morphological analyses are available for the

current word, their lemmata are used as candidates, otherwise suffix-based guessing

is carried out. For this, the guesser (described in Section 2.2.2.1) was extended
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to handle lemma transformations as well. Combined labels can represent both the

morpho-syntactic tag and suffix-transformations for lemmata (for an example see Table

2.1).

Table 2.1 Examples for the combined representation of the tag and lemma

Word házam ‘my houses’ baglyot ‘owl’

Tag N.1sPOS N.ACC

Lemma ház ‘house’ bagoly ‘owl’

Transformation -2+∅ -4+oly

Combined label (N.1sPOS, -2,–) (N.ACC, -4, oly)

As for picking the right lemma, we utilize a simple scoring model (2.10) that

evaluates candidates using their part-of-speech tags:

argmaxl S(l|t,w) (2.10)

This method is based on a twofold estimation of P(l|t,w). On the one hand, a unigram

lemma model (P(l)) calculates conditional probabilities using relative frequency

estimates. On the other hand, reformulation of P(l|t,w) yields another approximation

method:

P(l|t,w) = P(l, t|w)
P(t|w)

(2.11)

Substituting this formula to (2.10), P(t|w) becomes a constant which can be omitted.

In that way, we can estimate P(l, t|w) employing only the lemma guesser. Finally,

models are aggregated in a unified (S) score:

S(l|w, t) = P(l)λ1P(l, t|w)λ2 (2.12)

The idea of computing λ1,2 parameters is similar to that seen for the PoS n-gram

models. However, instead of using positive weights, negative scores are stored for the

better model. λk is calculated iterating over words of the training data (cf. Algorithm 1):
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Algorithm 1 Calculating parameters of the lemmatization model
for all (word, tag, lemma) do

candidates← generateLemmaCandidates(word, tag)

maxUnigramProb← getMaxProb(candidates, word, tag, unigramModel)

maxSuffixProb← getMaxProb(candidates, word, tag, suffixModel)

actUnigramProb← getProb(word, tag, lemma, unigramModel)

actSuffixProb← getProb(word, tag, lemma, suffixModel)

unigramProbDistance← maxUnigramProb − actUnigramProb

suffixProbDistance← maxSuffixProb − actSuffixProb

if unigramProbDistance > suffixProbDistance then

λ2← λ2 + unigramProbDistance − suffixProbDistance

else

λ1← λ1 + suffixProbDistance − unigramProbDistance

end if

end for

normalize(λ1,λ2)

1. first, both components return the best roots for each (word, tag) pair,

2. then probability estimates for the gold standard lemma are computed,

3. next, (absolute) error rates of the models are calculated ,

4. finally, the best model’s weight is decreased3.

After these steps, λk parameters are normalized.

2.2.2.3 Hybridization

Although, the framework proposed builds on an existing PoS tagging algorithm, it is

extended with a new lemmatization model and is modified to fit agglutinative languages

such as Hungarian. Hybridization steps listed below show the differences between

PurePos and its predecessors [35, 36].

3Since probability estimates are between 0 and 1, decreasing a weight gives higher values.
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Morphological analyzer

First of all, a morphological analyzer is utilized throughout the whole process,

therefore probability estimation is performed for valid4 analyses only.

Linguistic rules

Next, the presented architecture allows rule-based components to modify the

analyses of the MA, in that way, bad candidates can be filtered out. Furthermore,

lexical probability scores of analyses can be also given to PurePos, which are then

used as context-dependent local distribution functions.

Unseen tags

In contrast to TnT or HunPos, our system is able to handle unseen tags5 properly.

On the one hand, if a token has only one analysis not seen before, that one gets

selected with 1 lexical probability. Further on, estimation of forthcoming tags is

performed using a lower level (unigram) model in this case. On the other hand,

the system can also calculate lexical and contextual scores for any tag previously

not seen. This can be performed mapping latter tags to known ones using regular

expressions.6

k-best output

Finally, our method decodes tags using beam search. One can generate partly

disambiguated sentences being apt for linguistic post-processing. Further on, this

facility allows the usage of advanced machine learning techniques resulting in

more accurate parsing algorithms.

4Valid analyses for a word are those which are proposed by the MA.
5Morpho-syntactic labels which are not seen in the training data.
6For a complete example see Section 2.2.3.3.
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2.2.3 Experiments

2.2.3.1 Tagging general Hungarian

First, PurePos is evaluated on Hungarian texts. We used the Szeged Corpus [27] (SZC)

for our experiments, since it is the only Hungarian resource which is manually annotated

and is freely available. It contains general texts from six genres being annotated with

detailed (MSD) morpho-syntactic tags [25] and lemmata.

On the one hand, we used the original corpus (version 2.37). On the other hand,

a variant of the SZC was employed as well that is tagged with the analyses of Humor

[29, 30, 31]. Using both of them, we could evaluate our algorithm with two different

morphological annotation schemata. They were split in 8:2 ratio (randomly) for training

and testing (as in Table 2.2) purposes. Since the two corpora are not aligned which each

other (the transcribed one contains fewer sentences), results obtained on the two datasets

are not directly comparable.

Table 2.2 Dimensions of the corpora used

MSD tag-set Humor tag-set

Training set Test set Training set Test set

Tokens 1,232,384 254,880 980,225 214,123

Sentences 68,321 13,778 56,792 14,198

Distinct tags 1,032 716 983 656

As a morphological analyzer is an integral part of our method, we tested the tool with

two different modules. The first setting utilized the MSD tagged corpus and an analyzer

extracted from magyarlanc, while the second one applied Humor on the transcribed

corpus.

Evaluation was carried out measuring the overall accuracy of full annotations (i.e

(morpho-syntactic tag, lemma) pairs). For significance tests, we used the Wilcoxon

matched-pairs signed-rank test at the 95% confidence level dividing the test set into 100

7The MA that provides MSD annotations is only compatible with this corpus variation.
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data pairs. Sentence-based accuracies were also provided in some cases. The latter

metric was computed by considering a sentence to be correct only when all of its tokens

are properly tagged.

We compared our results with other morphological tagging tools available for

Hungarian8. Firstly, taggers providing full morphological annotations such as

magyarlanc, HuLaPos and Morfette9 were evaluated. Secondly, we assembled full

morphological taggers from available components10, since two-phase architectures were

also shown to be prosperous (e.g. [59, 58]).

Concerning PoS tagging, we used three of the most popular algorithms as baselines.

These are the following:

• the trigram tagging method of HunPos,

• averaged perceptron learning and

• the maximum entropy framework of the OpenNLP [82] toolkit.

As regards lemmatization, CST [26] and a simple baseline method (BL) were

employed. The latter one assigns the most frequent lemmata to a previously seen (word,

tag) pairs, otherwise the root is considered to be the word itself.

Beside these components, tag dictionaries were prepared for HunPos, since it can

employ such resources. At this point we simulated a setting, where the tagger was only

loaded once. Therefore, a large lexicon was prepared for the tool. In that way, analyses

of the 100,000 most frequent words of Hungarian were provided to the tagger11.

8Since, our aim was only to compare available tagger methods, not to optimize each of them, external
tools were employed with their default settings.

9Version 3.5 is used.
10PoS taggers are trained using the full morpho-syntactic labels of words.
11Frequencies are calculated relying on the results of the Szószablya project [83].
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Table 2.3 Tagging accuracies of Hungarian taggers on the Szeged Corpus (annotated
with MSD labels)

PoS tagging
Morph. tagging

Token Sentence

magyarlanc 96.50% 95.72% 54.52%

Morfette 96.94% 92.24% 38.18%

HuLaPos 96.90% 95.61% 54.57%

PurePos 96.99% 96.27% 58.06%

HunPos + BL 96.71% 92.65% 36.06%

HunPos + CST 96.71% 91.19% 35.31%

Maxent + BL 95.63% 92.21% 34.82%

Maxent + CST 95.63% 90.14% 29.70%

Perceptron + BL 95.19% 91.16% 29.42%

Perceptron + CST 95.19% 89.78% 27.91%

Table 2.4 Tagging accuracies of Hungarian taggers on the transcribed Szeged Corpus
(annotated with Humor labels)

PoS tagging
Morph. tagging

Token Sentence

Morfette 97.60% 94.73% 51.58%

HuLaPos 97.19% 95.53% 57.55%

PurePos 98.65% 98.58% 81.78%

HunPos + BL 97.41% 89.93% 32.07%

HunPos + CST 97.41% 94.69% 52.40%

Maxent + BL 94.81% 88.82% 28.19%

Maxent + CST 94.81% 92.33% 40.10%

Perceptron + BL 95.97% 88.85% 29.11%

Perceptron + CST 95.97% 93.32% 45.13%
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First of all, there are notable discrepancies between the results on the two datasets

(cf. Tables 2.3 and 2.4). On the one hand, performance discrepancies can be explained

by the morphological analyzers used. These tools have different coverage, thus they

affect the results of parsing chains built on them. On the other hand, the two corpora

utilize different annotation schemes:

• First, the original corpus contains foreign and misspelled words being tagged with

a uniform X tag. Due to the various syntactic behavior of such tokens, their labels

could not be estimated using their context or their suffix properly.

• Further on, date expressions and several named entities are tagged with a single

MSD code resulting in lemmata composed of more than one words. (An example

is Golden Eye-oztunk ‘we visited the Golden Eye’ being lemmatized as Golden

Eye-ozik ‘to visit the Golden Eye’.) Such phenomena could be hard to handle for

lemmatizers.

These variations can have a huge impact on morphological disambiguation algorithms.

In our case, they decrease the accuracy of MSD-based systems, while allow

Humor-based ones to produce better annotation (since the corresponding corpus is free

of such phenomena).

In general, results show that the best-performing systems are PurePos, HuLapos,

magyarlanc and Morfette. Besides, HunPos also achieves high PoS tagging scores,

while the other two-stage taggers are far behind state-of-the-art results. As regards

learning methods of the OpenNLP toolkit, their performance indicate that they cannot

handle such labeling problems precisely. Further on, both of the standalone lemmatizers

degrade accuracy. This reduced performance can be due to their design: the baseline

method was not prepared for handling unknown words, while CST was originally

created for inflectional languages. An interesting difference between lemmatization

scores is that the baseline (BL) strategy performs better on the original corpus, while

the CST tool gives higher accuracy on the Humor-labeled dataset. A reason behind this

phenomena can be that the latter dataset has higher lemma ambiguity (cf. Section 2.1)

thus requiring advanced methods.
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An explanation for the high morpho-syntactic labeling score of PurePos is that it

uses morphological analyzers to get analysis candidates. This component can reduce

the number of unknown words, thus enabling the system to provide better annotations.

While HunPos also uses such resources, it can only handle static lexicons, which limits

its accuracy.

As regards magyarlanc, it also yields first-class results (95.72% accuracy) on the

MSD-tagged corpus. However, its built-in language (and annotation scheme) specific

components inhibited its application on the other corpus. Further on, HuLaPos is an

interesting outlier. It is based on pure stochastic methods, but it can still achieve high

precision. These results can be explained by the larger contexts used by the underlying

machine translation framework. Next, Morfette also provides accurate annotations

(concerning PoS labels only), however, it has problems with computing the roots of

words.

Results show that PurePos provides the most accurate annotations amongst tested

tools. Further on, its advance over other systems is statistically significant (Wilcoxon

test of paired samples, p < 0.05)12. In addition, sentence-based accuracies (especially

on the Humor-tagged corpus) also confirms the superior performance of our method.

These values reveal that most of the tools result in erroneously tagged sentences in more

than half of the cases, while the same number for our method is much less (18% on the

transcribed corpus and 42% on the original one).

It was shown that the presented algorithm can produce high quality morpho-syntactic

annotations handling the huge number of inflected forms of Hungarian. Further on, it

can also produce precise root candidates for both previously seen and unseen tokens due

to its improved lemma computing method. In that way, PurePos is a suitable tool for

morphological tagging of Hungarian.

12Pairwise tests were carried out comparing token-level accuracies of PurePos and other competing
tools on each corpus.
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2.2 Hybrid morphological tagging methods

2.2.3.2 Resource-scarce settings

Next, PurePos is compared to other taggers on less-resourced scenarios. For this, we

use systems13 and corpora described in Section 2.2.3.1. To simulate such settings, when

just a limited amount of training data is available, we trained all the taggers using a few

thousand sentences only (cf. Table 2.5). As an evaluation, learning curves of systems

are drawn on both versions of the test set.

Table 2.5 The number of tokens and sentences used for training the taggers for
simulating resource-scarce settings

Sentences 2,000 4,000 6,000 8,000 10,000

Tokens (MSD-tagged corpus) 13,555 26,496 53,563 79,916 107,113

Tokens (Humor-tagged corpus) 20,863 41,740 82, 964 121,026 146,816

Figure 2.4 Learning curves (regarding token accuracy) of full morphological taggers on
the Szeged Corpus (using MSD labels)

13Unfortunately, we could not measure the performance of magyarlanc, since the current release of
the tool cannot be trained.
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2.2 Hybrid morphological tagging methods

Figure 2.5 Learning curves (regarding token accuracy) of full morphological taggers on
the Szeged Corpus (using Humor labels)

Figure 2.6 Learning curves (regarding sentence accuracy) of full morphological taggers
on the Szeged Corpus (using MSD labels)
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2.2 Hybrid morphological tagging methods

Figure 2.7 Learning curves (regarding sentence accuracy) of full morphological taggers
on the Szeged Corpus (using Humor labels)

First, Figures 2.4 and 2.5 present morphological tagging accuracies of systems

depending on the number of tokens in the training corpus. These results are in

accordance with conclusions of our previous experiments; however, the differences

revealed are higher. Further on, the large distance between the accuracy scores

of PurePos and other tools confirms the effectiveness of our hybrid approach in

less-resourced scenarios.

Additionally, if we compare (cf. Figures 2.6 and 2.7) the sentence-based accuracies

of the taggers, the gap between their performance are much more emphasized. For

example, having only 2,000 sentences for training (with MSD tags) the proposed

algorithm results in 40.71% sentence-level accuracy compared to the second best of

18.62%. The increased performance of our method is in a great part due to two

things. On the one hand, the system presented extensively use morphological analyzers,

restricting the number of candidate analyses effectively thus providing more accurate

analyses for OOV tokens. On the other hand, Markov models are known to perform

better in the case of resource-scare scenarios compared to discriminative methods.
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2.2 Hybrid morphological tagging methods

In brief, we have shown that the architecture of PurePos allows producing accurate

annotations when the amount of training data is limited. Therefore, our method could

be used for morphological tagging scenarios when there is just a few thousand manually

annotated sentences are available.

2.2.3.3 The case of Middle- Old-Hungarian

Next, we present a tagging task showing the effectiveness of all the hybrid components

available in PurePos. In a project [28, 12] aiming at the creation of an annotated corpus

of Middle Hungarian texts, an adapted version of the Hungarian Humor morphological

analyzer [28] was used14. This tool was originally made to annotate contemporary

Hungarian, but the grammar and lexicon were modified to handle morphological

constructions that existed in Middle Hungarian but have since disappeared from the

language. In the experiments described here, we used a manually disambiguated portion

of this corpus. The tokens were labeled using a rich variant of the Humor tag-set having

cardinality over a thousand.

Table 2.6 Number of clauses and tokens in the Old and Middle Hungarian corpus

Training Development Test

Documents 140 20 30

Clauses 12,355 2,731 2,484

Tokens 59,926 12,656 11,763

The corpus was split into three parts (see Table 2.6) for the experiments. The

tagger was trained on the biggest one, adaptation methods were developed on a separate

development subcorpus, while final evaluation was done on the test set. We used

accuracy as an evaluation metric, but unambiguous punctuation tokens were not taken

into account (in contrast to how taggers are evaluated in general). They are ignored

because the corpus contains a relatively large amount of punctuation marks which

14The adaptation of Humor and the annotation were done by Attila Novák and Nóra Wenszky. The
author’s contribution is the enhancement of the morphological tagging chain.
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2.2 Hybrid morphological tagging methods

would distort the comparison. Methods were evaluated in two ways: full morphological

disambiguation accuracies were calculated for tokens and they were also computed to

obtain clause-level accuracy values. In addition, error rate reduction (ERR) (2.13) is

calculated measuring the percentage of mistakes (E) of a baseline tagger (b) that are

corrected by an enhanced method (n).

ERR(b,n) =
E(b)−E(n)

E(b)
(2.13)

We used the improved trigram-based algorithm derived from HunPos and

implemented in PurePos (PP) as a baseline PoS tagger. This basic chain is enhanced

step-by-step investigating the impact of each component. First, the MA and the new

lemmatization method is analyzed on the development set (cf. Table 2.7).

Table 2.7 Baseline disambiguation accuracies on the development set. BL is the baseline
unigram lemmatizer, while CL is d̄the proposed one. PPM and PP both denote the
PurePos tagger, however the first uses a morphological analyzer.

Tokens Clauses

PP + BL 88.99% 55.58%

PPM + BL 97.22% 84.85%

PP + CL 92.14% 65.40%

PPM + CL 97.58% 86.48%

On the one hand, we compare the PoS tagging method of PurePos with (PPM) and

without the morphological analyzer (PP). On the other hand, the simple unigram-based

(BL) lemmatizer (cf. Section 2.2.2.1) is evaluated against the proposed one (CL). First,

it was found that the usage of a morphological component is indispensable. Next, results

show that the proposed algorithm yields a significant error rate reduction compared to

the baseline. This improvement is even more notable (28.42% ERR) when a dedicated

morphological analyzer is not used.
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2.2 Hybrid morphological tagging methods

Below, several experiments are presented to exhaust hybrid facilities of PurePos,

thus yielding a more accurate tagger. To that end, the development set was utilized to

analyze common error types and to develop hypotheses.

Mapping of tags In contrast to other Hungarian annotation projects, the tag-set of the

historical corpus distinguishes verb forms that have a verbal prefix from those that do

not, because this is a distinction important for researchers interested in syntax.15 This

practically doubles the number of verb tags16, which results in data sparseness problems

for the tagger. In the case of a never encountered label having a verbal prefix marking,

one can calculate probability estimates for that tag by mapping it to one without a verbal

prefix. This solution is viable, since the distribution of prefixed and non-prefixed verbs

largely overlap. Applying this enhancement (TM), we could increase the accuracy of

the system on the development set (to 86.53% clause level accuracy) notably.

Preprocessing Another point of improvement is to filter analyses of Humor (FI).

Exploiting the development set, a preprocessing script was set up which has five simple

rules. Three of them catches the tagging of frequent phrases such as az a ‘that’ in which

az must be a pronoun. Further on, two domain specific lexicons were employed to

correct the erroneous annotation of proper names that coincide with frequent common

nouns or adjectives. Using these correction rules the overall performance on the

development set was further raised to 86.77% clause accuracy.

k-best output The k-best output of the tagger can either be used as a representation

to apply upstream grammatical filters to or as candidates for alternative input to higher

levels of processing. Five-best output for our test corpus has yielded an upper limit for

attainable clause accuracy of 94.32% (on the development set). While it is not directly

comparable with the ones above, this feature could e.g. be used by syntactic parsers.

15Hungarian verbal prefixes or particles behave similarly to separable verbal prefixes in most Germanic
languages: they usually form a single orthographic word with the verb they modify, however, they are
separated in certain syntactic constructions.

16320 different verb tags occur in the corpus excluding verb prefix vs. no verb prefix distinction. This
is just a fraction of the theoretically possible tags.
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2.3 Combination of morphological taggers

Table 2.8 Disambiguation accuracies of the hybrid tool on the test set. TM is the tag
mapping approach, while FI denotes the rule-based preprocessing.

Token Clauses

Baseline 89.47% 55.07%

PurePos 96.48% 80.95%

+ TM 96.51% 81.17%

+ FI 96.60% 81.55%

+ all 96.63% 81.77%

+ all with k-best 98.66% 92.30%

Enhancements are validated evaluating them on the test set. Data in Table 2.8 show

that each linguistic component improves the overall chain significantly17. Further on,

using the 5-best output sequence of the tagger one can further improve the accuracy

of the tool. Golden tags and lemmata are available for 92.30% of the clauses and for

98.66% of the tokens between the top five annotation sequence.

We have shown that one can further increase the tagging accuracy by employing

hybrid facilities of PurePos. First, rules were employed filtering our erroneous analysis

candidates, then unseen tags were mapped to previously seen ones successfully. Finally,

we have shown that the 5-best output contains significantly more golden annotations.

2.3 Combination of morphological taggers

Although high accuracy tagging tools are generally available, sometimes their

performance is not satisfactory and shall be increased further. In cases where very

high annotation quality is required, variance of tools should be considered. Disparate

methods can result in different sorts of errors, therefore their combination can yield

better algorithms. Even though this idea is not new, being present in both machine

learning and NLP literature, there has not been much work done on in this field for

morphologically rich languages.
17We used the Wilcoxon matched-pairs signed-rank test at p < 0.05
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In this section, the case of agglutinative languages is investigated by experimenting

with Hungarian morphological disambiguator tools. First, we give a brief overview

about PoS tagger combination methods. Next, discrepancies of two taggers are

presented allowing us to create a new combination architecture. Finally, we evaluate

the proposed method by measuring its improvement over baseline tools used.

2.3.1 Background

For reviewing previous attempts on tagger combination approaches we rely on a recent

study of Enríquez et al. [84]. Their work not just investigates existing methods in detail,

but also evaluates them for various NLP tasks (involving PoS tagging). Introducing the

problem, the authors seek answers for the following question: "What does it take for the

combination to be successful?". They conclude (referring to Hansen and Salamon [85])

that there are two fundamental requirements for the success. Classifiers employed must

make different sorts of errors, and at the same time these algorithms should be more

accurate than a random classifier.

Kuncheva [86] and Enríquez et al. [84] differentiate four levels of combination

strategies. Firstly, the meta-classifier is a point of decision, since it greatly effects how

categories suggested by the base classifiers are merged. Secondly, one can decide on

algorithms used as base classifiers. Thirdly, when feature vectors are utilized to represent

examples, their variation can also impact the final result. Finally, different datasets can

be utilized to generate diverse taggers.

Regarding Enríquez et al. [84] and Xu et al. [87], combination algorithms can be also

distinguished by their input. Such methods can either receive only the PoS labels from

the input taggers or it can get a more general output. A ranked list of labels – where

part-of-speech categories are sorted by their confidence level – contains much more

information. Furthermore, lists containing relevancy scores give the most background

knowledge for combination methods.
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2.3 Combination of morphological taggers

Several ensemble strategies have been applied to PoS tagging in the literature,

including voting, bagging, boosting, stacking (cf. [88, 89, 81, 90, 91, 92]) or even

using rules for aggregating outputs of input taggers [93]. Two of the most influential

studies are the ones which presented by Brill and Wu [88] and Halteren et al. [89].

The former work presents the first attempts of combining English taggers. The authors

propose a memory-based meta-learning scheme which employs contextual and lexical

clues. In their experiments, the solution where the top-level learner always selects the

output of one of the embedded taggers outperformed the more general scheme that

allowed the output differ from either of the proposed tags. The comprehensive study

of Halteren et al. [89] compares several ensemble methods on three different corpora,

showing that stacking methods can be used efficiently to train top-level classifiers for an

optimal utilization of the corpus. They found a scheme performing best characterized as

generalized voting.

A system of different architecture is presented by Hajič et al. [94]: in contrast

to the parallel and hierarchical architecture of the systems above, it employs a serial

combination of annotators starting with a rule-based morphological analyzer, followed

by constraint-based filters feeding statistical taggers at the end of the chain.

We extend the approach of and Brill and Wu [88] and Halteren et al [89] by

adapting their method to the morphological tagging of an agglutinative language. Our

ensemble method builds on only the abstract output of input taggers without knowing

their rank or score. We use stacking with features adapted to Hungarian, furthermore,

language-specific symbolic components are also utilized in our system. To produce a

full morphological tagger, the underlying architecture is modified to generate lemmata

candidates as well.

2.3.2 Discrepancies of taggers

Evaluating taggers on general Hungarian can show that two of the best performing tools

(our new method and HuLaPos) significantly diverge by the errors they made. In our

evaluation scheme, a detailed analysis of errors was carried out first, aiming to reveal
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2.3 Combination of morphological taggers

their possible combined performance. For this, we utilized the Humor-tagged Szeged

Corpus (described in 2.2.3.1). We kept the training sentences (80% of the corpus), but

the rest was split into two parts. The first half was employed for development purposes,

while the second one was set apart for the final evaluation (cf. Table 2.9).

Table 2.9 Number of sentences and tokens used for training, tuning and evaluating
combination algorithms

Tokens Sentences

Training set 980,225 56,792

Development set 105,779 7,099

Test set 108,344 7,099

First of all, we could not compare word class error rates one-by-one to reveal

differences of taggers, since the cardinality of the tag-set is over 1,000. Further on, we

could neither rely on Brill’s well-known formula (cf. [88]), as it gives hard-to-interpret

unlimited negative values when there is a considerable amount of overlap between

the errors investigated. Therefore, a new metric, called Own Error Rate (OER), was

introduced to measure the relatedness of the taggers’ errors. We used the formula

OER(A,B) =
#errors of A only

#errors of either A or B
(2.14)

for calculating the percentage of tagger A being wrong but B being correct in proportion

of all errors made by either A or B.

Table 2.10 Error analysis of PurePos (PP) and HuLaPos (HLP) on the development set

Tagging Lemmatization Full disambig.

Agreement rate 97.60% 98.02% 96.92%

They are right when they agree 99.30% 99.85% 99.29%

One is right when they disagree 97.53% 98.89% 97.14%

OER(PP, HLP) 22.41% 11.66% 21.16%

OER(HLP, PP) 53.58% 80.21% 58.24%
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To begin, we investigated the agreement of tools on the development set. As Table

2.10 shows:

1. they agree on the full annotation in most of the cases,

2. matching tags and lemmata are almost always right,

3. one of them (frequently) knows the correct annotation even when their guesses do

not match.

Secondly, own error rates indicate that even though HuLaPos performs worse than

PurePos, the errors are fairly balanced between them.

Table 2.11 Accuracy of the oracle and the baseline systems on the development set

Tagging Lemmatization Full disambig.

PurePos 98.57% 99.58% 98.43%

HuLaPos 97.61% 98.11% 97.03%

Oracle 99.26% 99.83% 99.22%

Finally, the theoretical maximum performance of the combination (marked as oracle)

is presented in Table 2.11. Assuming a hypothetical oracle always selecting the correct

(tag, lemma) pairs from the tools’ suggestions, the accuracy of the better tagger can be

further increased eliminating 72.73% of PurePos’ errors.

2.3.3 Improving PurePos with HuLaPos

To utilize combination through cross-validation, the training set was split into 5

equal-sized parts. Level-0 taggers (PurePos and HuLaPos) were trained 5 times using

the 4/5 of the corpus while the rest of the sentences were annotated by both taggers in

each round. The union of these automatically annotated parts were used to train the

(level-1) metalearners. Furthermore, this technique allowed us to utilize all the training

data in each level, yet separating the two phases of the training process.
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Concerning the question of choosing a level-1 learner we followed Witten et al. [42]

for investigating only “relatively global, smooth” algorithms. We utilized 18 the naïve

Bayes (NB) classifier [95] and instance-based (IB) learners [37]. The latter in addition

to be simple, had been previously shown to perform well in similar combination tasks.

Another important decision was to apply metalearners only in cases of disagreement,

since the tools’ agreement rate was high.

There are at least two parameters which must be set for IB learners. First, a distance

function needs to be selected, then the number of neighborhooding events has to be

restricted. In that way, we opted on using Manhattan distance and decided to rely only

on the single closest item.

Moving on, Hungarian has a tag-set with a cardinality of over a thousand and

an almost unlimited vocabulary. Therefore, we applied meta-algorithms choosing the

tagger but not the tag.

As regards features, we relied on the set proposed by Brill and Wu [88], since it

had been shown (cf. [89]) to be simple but powerful. It (FS1 in Table 2.12) consists of

several lexical properties such as

1. the word to be tagged,

2. immediate neighbours of the token,

3. tags suggested for the corresponding word,

4. tags suggested for neighbouring tokens.

18C4.5 decision tree algorithm was involved in our experiments, but it was unable to handle the large
amount of feature data used.
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Table 2.12 Feature sets used in the combination experiments

Feature set Base features Additional features

FS1 Brill-Wu —

FS2 FS1 whether the word contains a full stop or hyphen

FS3 FS1 use at most 5-character suffixes instead of the word form

FS4 FS2, FS3 —

FS5 FS1 guessed tags for the second word both to the right and left

FS6 FS4 use at most 10-character suffixes instead of the word form

First, we examined how these attributes can be extended systematically (see Table

2.12) to fit languages with a productive morphology. Since wordforms in Hungarian

are composed of a lemma and numerous affixes, longer suffixes features are utilized to

handle data sparseness issues. Further on, wider context were also employed to manage

the free word order nature of the language.

Performing the experiments, we used the WEKA machine learning toolkit [38].

Improvements were measured on PoS tagging, lemmatization, as well as on the full

annotation scenario.

Table 2.13 Error rate reduction of combination algorithms on the development set. IB is
the instance based learning algorithm, while NB denotes naïve Bayes.

Task: Tagging Lemmatization Full annotation

Feature set NB IB NB IB NB IB

FS1 19.03% 24.65% -6.21% 22.24% 5.06% 22.89%

FS2 18.91% 24.82% -0.80% 23.85% 4.95% 23.16%

FS3 21.04% 27.60% 0.80% 26.65% 18.42% 25.31%

FS4 20.92% 27.90% 4.01% 26.65% 18.96% 25.20%

FS5 16.37% 17.55% -19.24% 16.03% -0.70% 18.47%

FS6 19.27% 27.30% -17.03% 26.85% 16.16% 25.79%
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Table 2.13 shows error rate reduction scores of different systems compared to

PurePos. These results reveal that naïve Bayes classifier (NB) performs significantly

worse than instance-based learners (IB) even when using seemingly independent

features. Further on, lemma combination turned out to be an insoluble task for

that classifier. Improvements show that word shape features (FS2) always help on

tagging, while increased contexts (FS5) are not as powerful. An interesting outcome

of combining PoS taggers was that the word to be tagged was not necessary amongst the

features (see FS4 and FS6 at Table 2.13). However, utilization of longer suffixes boosts

the performance. In addition, they are also beneficial in cases where lemmatization is

part of the task.

Now we turn on experiments yielding the best combination architecture for full

morphological annotation.

2.3.3.1 Combination of morphological taggers

A simple combination structure is to treat annotations as atomic units letting the

metalearner choose the output of one of the baselines (cf. Figure 2.8). Results on the

development set suggest utilizing instance-based methods with the FS6 feature set for

this architecture (cf. “Full annotation” column in Table 2.13).

Figure 2.8 Combining the output of two morphological taggers
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2.3.3.2 Combining PoS taggers only

Another plausible scheme is to combine only the PoS tagger modules of the tools (see

Figure 2.9). However, in doing so, one has to deal with lemmatization as well. A

straightforward solution for this to employ the lemmatizer of the better annotator tool

(PurePos). Following this, the best tag selection model could be constructed (cf. Table

2.13) using instance based learning with the FS4 feature set.

Figure 2.9 Combining the output of two PoS taggers and using also a lemmatizer

Although this algorithm allows us to create a better morpho-syntactic tagger

compared to that of above, the gain in lemmatization remains much lower (6.81%).

Consequently, the overall accuracy improvement measured in the development set

(25.26%) is inferior.

2.3.3.3 Multiple metalearners

Finally, the best results are produced using two level-1 learners: one of them chooses

the better lemmatizer while the other selects the optimal PoS tagger (cf. Figure 2.10).

In that way, this architecture can incorporate the best lemma and tag candidates (as in

Table 2.13) yielding superior performance. However, a drawback of this configuration

is that it may result in incompatible tag-lemma pairs19. To overcome this problem,

this combination scheme is enhanced with the Humor morphological analyzer. This

component is used to discover and fix incompatibilities. With this enhancement, we

achieved 32.42% of improvement on the development set.
19A lemma and a tag for a word is incompatible if the MA can analyze the word, but no analysis

contains both the lemma and the morpho-syntactic label.
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Figure 2.10 Combining the output of two PoS taggers and lemmatizers

2.3.4 Evaluation

Table 2.14 Relative error rate reduction on the test set compared to PurePos

System Tagging Lemmatization Full disamb.

Oracle 48.60% 59.42% 51.53%

Disamb. combination 23.23% 23.55% 26.86%

Tagger combination 22.76% 13.77% 23.81%

Multiple metalearners 25.07% 29.89% 28.90%

All the presented combination schemes are evaluated on the unseen test set. Results

show (cf. Table 2.14) that the hybrid architecture using a morphological analyzer

achieved the best performance. While other schemes could also increase the

performance of PurePos, it resulted in the highest accuracy (98.90%) fixing 28.90%

of the baseline system’s errors. This improvement score also shows that our system

could capture more then half of the cases which can be fixed by a hypothetical oracle

combinator. Further on, the proposed method also gives the highest error rate reduction

in both PoS tagging and lemmatization. Concerning statistical significance, both the

improvements of the presented schemes and their differences are significant at p < 0.05

(using Wilcoxon test of paired samples). These results show that our new combination
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architecture can be used in cases when very high disambiguation accuracy is crucial.

Finally, we also confirmed that PurePos and HuLaPos can complement each other

resulting in an improved morphological tagger.
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3
An application of the tagger: estimating

morpho-syntactic complexity

3.1 Motivation

Do linguists need to spend long hours counting morphemes for measuring

morpho-syntactic complexity? Ever since the first studies, mean length of utterance

(MLU) plays an important role in language development investigations. This metric has

been widely used for measuring linguistic productivity of children for almost a hundred

years. Utterance lengths are usually calculated in morphemes (MLUm) that is rather a

time-consuming task. Even though CLAN toolkit [96, 97] can compute MLUm, this

feature is only available just for a few languages not containing any agglutinative ones.

This chapter presents1 an automatic method for estimating MLUm for Hungarian

transcripts. We show that PurePos can be used effectively for aiding linguists in this

scenario. Our approach adapts this tagging tool (cf. Section 2.2.2) yielding the first

Hungarian tagger for spoken texts. Further on, we describe an MLUm estimation

method, which is based on the adapted tagger, resulting in a high quality output.

1This study is a joint work with Kinga Jelencsik-Mátyus. Manual annotation of the data were
performed by both of us, while the morpheme counting principles are her work. My contribution is
the construction of the tagging chain, its adaptation and the automatization of the MLUm calculation.
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3.2 Background

First, related studies are summarized, then we present the resources used for the

research. Next, the adaptation steps of PurePos are described and the framework

designed is introduced. Finally, we show that both the tagger and the estimator methods

are accurate enough to replace the labor-intensive manual calculation.

3.2 Background

Tagging approaches of spoken languages mainly cover only mainstream ones (such as

English, Italian or Spanish) while agglutinative ones are usually neglected. One of the

pioneers in this field was Eeg-Oloffson [98] using manually annotated transcripts to train

a statistical tagger (for English). In contrast, there are others employing and adapting

statistics of written language corpora [99, 100, 101]. Besides, building domain-specific

rules also lead to satisfactory taggers (e.g. [102]), while combination of such systems

with stochastic tools [103] yields effective algorithms as well.

These previous studies imply that a proper morphological annotation system, which

aims to process speech transcripts, must be able to handle the following types of

difficulties:

1. existence of new morpho-syntactic tags which are missing from the tag-set of the

training data,

2. occurrence of tokens with non-standard orthography in texts,

3. the number of words unknown to a statistical tagger are increased compared to

written language corpora,

4. if probability estimates are derived from a written language training corpus,

models of stochastic taggers can become non-representative (e.g. the distribution

of PoS tags may significantly differ in written and spoken language).

Ever since the complexity of child language was measured, several methods have

been developed. While manual counting prevailed for decades, automatic counting tools

have been sought for in the past years.
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Several studies (e.g. [104]) showed that MLUm indicates language development

for children, especially at very early stages. In contrast, mean length of utterance in

words (MLUw) was shown to correlate highly [105, 106] with the latter in the case

of analytical languages such as English or Irish. Therefore, some studies concur that

MLUw is a reliable measure as opposed to MLUm, where researchers often need to

make ad hoc decisions on what (not) to count (see [107]).

Crystal also points out [107] that computing length in morphemes is a good way

to measure morphologically complex languages (see e.g. [108]). Hungarian is an

agglutinative language, thus this measure can be considered to be a more reliable

indicator of language development than MLUw (similarly to Turkish [109]). Moreover,

previous studies investigating language development in Hungarian [110, 111] also

employed MLUm as a metric.

In the case of corpora which follow the CHAT guidelines [97, 96], lengths of

utterances (including morpheme counting) can be calculated [112] with the CLAN

[96] toolkit. This system is widely used, since it has components performing the

necessary preprocessing steps. One of its modules, MOR [96] is a morphological

analyzer designed for spoken language corpora. A subsequent component is POST

[113], doing the morphological disambiguation. Finally, a morpheme counter tool using

their output is also available. In that way, MLUm is usually calculated in a number of

languages applying these tools. However, they lack rules for Hungarian and many other

morphologically complex languages, thus none of them can be used for analyzing such

transcripts.

We are not aware of any research investigating the tagging of spoken Hungarian.

Moreover, there is no study aiming to calculate MLUm for Hungarian transcripts

automatically. Therefore, we introduce adaptation methods for a general-purpose tagger

which is then utilized for counting morphemes resulting in accurate MLUm estimates.
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3.3 Resources

3.3 Resources

There is no Hungarian speech corpus morpho-syntactically annotated, therefore we use a

contemporary one as a base of our research. Hungarian Kindergarten Language Corpus

(HUKILC) [2] has been compiled predominantly for child language variation studies.

It contains 62 interviews with 4.5–5.5 year-old kindergarten children from Budapest,

recorded in the spring of 2012. The interviews are 20–30 minutes long consisting

different types of story-telling tasks. Its transcription was carried out using the Child

Language Data Exchange System (CHILDES) [97] following its guidelines. The corpus

has about 39,000 utterances with 140,000 words.

In order to develop a proper tagger tool, a small part of the data has been manually

annotated. As a first step, general tagging principles were established. We chose the

morpho-syntactic labels and lemmata (detailed in [114]) of the Humor analyzer [29,

30] to represent morphological analyses. Next, an annotation manual was developed for

human annotators to guide their work during the morphological disambiguation of the

corpus. The whole process was carried out iteratively:

1. a portion of the sentences were morphologically disambiguated by the annotators

independently,

2. discrepancies were discussed and resolved,

3. the annotation guide was updated accordingly.

In that way, 6 interviews with about 1,000 utterances were labeled manually by two

experts (involving the author). Finally, the gold standard corpus was split randomly into

two sets of equal sizes: a development and a test set (see Table 3.1).

Table 3.1 Number of tokens and utterances in the gold standard corpus

Utterances Tokens

Development set 509 3,340

Test set 449 2,740
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The tag-set of the corpus has been created to allow both the investigation of

morpho-syntactic relations and the representation of phenomena typical to transcripts.

First of all, a new label was introduced to mark filled pauses. Further on, the original

annotation scheme of Humor distinguishes interjection and utterance words2, but there

are cases in speech when a word bears with both properties (such as fúú ‘woow’).

Therefore, a new label was created for annotating such tokens properly. Finally, the

usage of diminutive is common in child transcripts, thus this property was indicated in

labels and corresponding suffixes were omitted from lemmata.

3.4 Tagging children transcripts

The morphological tagging algorithm employed is a hybrid one. It is composed

of a morphological analyzer, a stochastic tagger tool and several domain-specific

disambiguation rules as well (cf. Figure 3.1). Since the tag-set of Humor was chosen to

be used for the annotation, a plausible solution was to employ this analyzer. Further on,

PurePos was utilized to disambiguate between the morphological annotation candidates.

We used the Szeged Corpus [27] with Humor annotations to train the tagger.

Figure 3.1 The architecture of the morphological tagging chain adapted for the HUKILC
corpus

In order to apply a morphological analyzer prepared for written texts, its analyses had

to be adjusted for the transcripts. Thus, adaptation rules – based on regular expressions

and domain-specific word lists – were constructed using the development set. Their

formulation could be done with high confidence, since most of the transcripts contained

controlled conversation covering only a few topics.
2Annotation schemes for Hungarian distinguish utterances and interjection words. An utterance word

forms a sentence or an utterance alone by interrupting or managing the communication. In contrast,
interjections are either onomatopoeic or used to indicate emotions.
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3.4 Tagging children transcripts

As a first step, morphological analyses of about 40 words typical of spoken language

were created manually. These tokens were mostly interjections not used in written

language (such as hűha ‘wow’), while some adverbs were regarded as utterance words

in the corpus (e.g. komolyan ‘seriously’). Furthermore, those tokens that are written as

one word in transcripts but are spelled as two words in formal texts were also added to

the lexicon. An example is légyszíves ‘please’ which is written formally as légy szíves.

Finally, diminutive analyses were also provided where it was necessary. E.g. kutyus

‘doggy’ was also analysed as N.DIM with the lemma kutya ‘dog’ beside the old label N

and the kutyus ‘doggy’ root. This process was carried out by investigating the lemmata

produced by Humor: if the deletion of the derivational affix resulted in a root enumerated

in a domain-specific list, a new diminutive analysis was created as well.

Concerning the disambiguation process, PurePos was extended with rules to adapt

its knowledge to the target domain. First, the tagger was forced to assign diminutive

analyses when it was possible. Secondly, rules were developed to assign interjection and

utterance annotations for appropriate words. Finally, further enhancements were carried

out by investigating the common mistakes of the tool on the development dataset.

A frequent error of the chain was the mistagging of akkor ‘when’ and azért ‘in order

to’. These words are pronouns and can be categorized as either adverbial, noun phrase

level or demonstrative ones, and can also behave as pronomial adjectives. Generally,

when akkor is followed by amikor ‘when’ (as in Akkor érkezett meg, amikor mentem ‘He

arrived, when I left’) and when azért is followed by mert ‘because’ (as in the sentence

Azért eszik, mert éhes ‘He eats, because he is hungry’) these pronouns are demonstrative

ones. Furthermore, such co-occurances are more common in the transcripts than in the

Szeged Corpus, since they are frequently used during reasoning or telling a story. As

these long-term dependencies could not be learnt by the trigram tagger applied, rules

were employed to tag these tokens correctly.

The next issue was the case of the word utána ‘afterwards, then; after him/her/it’.

It can either be used as an adverb of time (as in the sentence Utána elindultunk ‘Then

we left’) and as a postpositional phrase meaning ‘after him/her/it, following him/her/it’
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3.5 Computing morpho-syntactic complexity

(as in Elindultunk utána ‘We went after him’). The former usage is more frequent in

spoken language: when this word is directly followed by conjunctions such as meg ‘and’

or pedig ‘however’, it is always an adverb. Therefore, utána was tagged as an adverb in

the transcripts when it is followed by one of these trigger words.

The last rule introduced deals with meg, which may function as a verbal prefix or as

a conjunction. Moreover, it is usually an expletive in spoken language. Therefore, the

conjunctive label was assigned to the word when there was not any verb in its two token

window.

3.5 Computing morpho-syntactic complexity

As a first step, general principles of counting morphemes were established. In a language

with such a rich derivational system as Hungarian, it is often very complicated to identify

the lemmata. This is even more difficult in our case, since no common methodology

exists to determine the boundary of productivity in child language. This was based on

studies of Brown [104], Retherford [115], Wéber [111] and Réger [110], with some

necessary modifications. The basic principles were:

1. only meaningful words were analyzed, thus fillers (filled pauses such as ööö ‘er’),

punctuation marks and repetitions are not counted in the utterances;

2. phatic expressions (e.g. igen, mhm ‘yes, uhm’) serving to maintain

communication and not conveying meaning were omitted;

3. inflectional suffixes and lemmata were each counted as one unit;

4. derivational morphemes (including diminutives) were not counted as separate

ones,

5. reciprocal and indefinite pronouns (e.g. minden#ki ‘everybody’) and compound

words (such as kosár#labda ‘basketball’) were counted as one morpheme.
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Following the guidelines of Brown [104], proper names (such as Nagy Béla, Sári

néni ‘Miss Sári’) and lexicalized expressions (e.g. Jó napot ‘Good morning’), which are

frequent in speech, were also considered as one unit. Their identification was carried

out employing rules. For this, the method relies on capitalized token sequences and a

domain-specific list of words.

As for the automatization of rules, they were implemented using the morphological

annotation of the corpus. First, each item on the list of fillers was eliminated.

Afterwards, tagged words known to the MA were split into morphemes by the Humor

analyzer regarding their computed morpho-syntactic annotation. If more than one

analysis was available for a word in this phase, the least complex one was chosen,

since analyses only differed in the number of derivative tags and compound markers

(which we previously decided not to count) in the majority of the cases. As the labels

of the annotation scheme were composed of morphemic properties, the estimation of

unknown words could be based on their tags. Therefore, such calculations were carried

out counting only the inflection markers in the guessed tags (as it is listed in principles

above).

3.6 Evaluation

First of all, morpho-syntactic tagging performance of the system was investigated. Full

analyses – containing both the lemmata and the tag – were compared to the gold standard

data, not counting punctuation marks and hesitation fillers.

For measuring the individual advances of the enhancements presented, four different

settings were evaluated on the test set. The first was a baseline using raw analyses of

Humor disambiguated by PurePos. The second system (DIM) employed the extended

vocabulary and handled the diminutive analyses as described in Section 3.4. The next

one – marked with CONJ – utilized further rules aiming to tag azért and amikor

correctly. Finally, the last system presented contains all the enhancements detailed

above.
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Table 3.2 Evaluation of the improvements on the tagging chain (test set)

Morph. tagger
Tagging accuracy

Token Sentence

Baseline 91.97% 68.37%

+ DIM 94.92% 79.96%

+ CONJ 95.53% 81.74%

The full chain 96.15% 83.96%

Measurements in Table 3.2 show that the baseline tool tagged erroneously 3 out

of 10 sentences. On the contrary, each of the enhancements improved the overall

performance significantly. For this, we used the Wilcoxon matched-pairs signed-rank

test at p<0.05. Results indicate that the accuracy of the adapted chain is comparable with

that of the tagging methods for written corpora [32]. Furthermore, the performance of

the tool presented is similar or better compared to other results obtained by CLAN-based

taggers: Parisse and Le Normand [113] report 5% error rate on annotating French

transcripts, while the morphological disambiguator of Avaid et al. [116] results in 90%

accuracy for Hebrew.

As for the MLU estimation task, two metrics were used for the evaluation. First,

mean relative error was calculated (as in [42]), comparing the ai manual morpheme

counts with pi predicted values for the ith utterances:

MRE =
n

∑
i=1

|ai− pi|/ai

n
(3.1)

This measurement shows the average relative deviation of the estimated morpheme

counts from the one of human annotators.

53



3.6 Evaluation

In addition, Pearson’s correlation coefficient3 (3.2) (cf. [42]) was employed as well:

SPA√
SPSA

, where (3.2)

SPA =
∑i (pi− p)(ai−a)

n−1
,

SP =
∑i (pi− p)2

n−1
and SA =

∑i (ai−a)2

n−1

This metric is used to measure the correspondence between the output of the processing

chain and the counts of human annotators.

Table 3.3 Evaluation of the MLUm estimation algorithm using different morphological
annotations

Morphological annotation MRE Correlation

The output of the baseline tagger 0.1325 0.9612

The output of the adapted tagger 0.0449 0.9901

Gold standard annotations 0.0279 0.9933

Since both metrics require a gold dataset, morpheme counts were manually

calculated for 300 utterances of the test set. Table 3.3 presents the evaluation of the

MLUm estimation algorithm on this manually checked corpus. First, we evaluated the

output of the baseline tagger with our morpheme counter. Beside this, both the gold

standard data and the output of the enhanced tagging tool were used as an input of the

estimator. On the one hand, these results can be interpreted as an in vivo evaluation of the

adapted tagger showing significant improvements over the baseline. On the other hand,

it was found that the overall performance of the estimation methodology is outstandingly

high. The high correlation of the automatic chain indicates that our method can properly

measure the morpho-syntactic complexity of Hungarian spoken language in practice.

Therefore, the time-consuming manual counting procedure can be replaced with the

proposed method.

3The notation is the same above, except x is the average of xi values and n denotes the total number of
observation.
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4
Methods for a less-resourced domain:

preprocessing clinical Hungarian

4.1 Introduction

Hospitals produce a huge amount of clinical notes that have been solely used for

archiving purposes and have generally been inaccessible to researchers. However,

application of recent NLP technology can make accessible the hidden knowledge of

archived records, thus boosting medical research. An example is the English cTAKES

system [24], which can recognize important medical concepts in clinical free-text

documents. Beside extracting diseases, symptoms and treatments, the tool is also able

to identify various relations between them. This automatically extracted structured

knowledge can be e.g. used to

• create family histories from medical records,

• find document discrepancies,

• spot similar cases and

• build question answering or semantic search systems.

While developing text processing tools for medicians is an emerging field in many

developed countries, less-resourced languages lack such resources.
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4.2 Segmenting texts of electronic health records

To be able to extract information from medical texts, they must be preprocessed

properly. Firstly, adequate text segmentation methods are required for finding token

and sentence boundaries. Secondly, morphological tagging is an indispensable step for

information extraction scenarios. Considering the case of Hungarian, there are only

a few studies on processing medical records. Recently, Siklósi et al. [13, 117] have

presented a system that is able to correct spelling errors in clinical notes. Their system

uses a mixture of language models to generate correction candidates, however it focuses

only on correctly segmented words. Beside error correction, an abbreviation resolution

method was also presented by them [118], however, problems of text segmentation and

morpho-syntactic tagging are still untouched. Furthermore, as far as we know, no study

investigates such preprocessing tasks on Hungarian clinical texts.

Therefore, this chapter presents accurate preprocessing algorithms for noisy medical

texts. Methods were developed and presented for only Hungarian, but they are designed

in a way to perform well on other morphologically complex languages as well. Firstly,

an effective method is introduced for detecting sentence and token boundaries. The

presented system builds on well-known tokenization rules boosting them with the

knowledge of a morphological analyzer and the output of an unsupervised filtering

algorithm. Secondly, tagging experiments are presented yielding a viable morphological

tagger for Hungarian electronic health records. The proposed tool builds on PurePos

fixing its most common errors regarding the domain.

4.2 Segmenting texts of electronic health records

Error propagation in a text processing chain is usually a notable problem, therefore

accurate segmentation methods are essential to parse texts properly. Moreover, notes

written by doctors are extremely noisy containing errors which inhibit the application of

existing tools.
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4.2 Segmenting texts of electronic health records

Even though tokenization and sentence segmentation methods perform well on

general Hungarian, they have serious difficulties on clinical records. These originate

in special properties of such texts involving

1. typing errors (i.e. mistyped tokens, nonexistent strings of falsely concatenated

words) and

2. nonstandard usage of the language.

While errors of the first type can be corrected easily with e.g. a rule-based tool, others

need advanced methods.

In this section, a hybrid approach to segmentation of noisy clinical records is

presented. The method consists of two phases: first, tokens are partially segmented;

then, sentence boundaries are identified. We start with detailing the background of

our research and introducing resources used. Then, key elements of tokenization and

SBD algorithms are described. Finally, our system is systematically evaluated on a gold

standard corpus showing its high performance.

4.2.1 Previous approaches on text segmentation

Even though, numerous studies deal with English medical texts, only few attempts

have been made (cf. [13, 117, 118]) for Hungarian. Further on, the task of detecting

sentence and word boundaries in health records is often a neglected issue. Studies for

Hungarian pay almost no attention on segmenting texts, while most of the approaches

for English ignore this question. First, we review general tokenization and sentence

boundary detection techniques first, then describe their application on the biomedical

domain.

The task is often composed of several parts: normalization (when necessary),

tokenization, and sentence boundary detection. Although, these are generally performed

one after another, there are approaches (e.g. [119, 120]), where tokenization and SBD
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4.2 Segmenting texts of electronic health records

are treated as a unified tagging problem. Further on, handling of abbreviations is often

involved in the segmentation process, since their identification helps to detect sentence

and token boundaries.

As regards tokenization, it is generally treated as a simple engineering problem1

cutting off punctuation marks from words. On the contrary, SBD is a rather researched

topic. As Read et al. summarize [23], sentence segmentation approaches fall into three

classes:

1. rule-based methods employing domain- or language-specific knowledge (such as

abbreviations);

2. supervised machine learning approaches, which may not be robust amongst

domains (being specialist on the training corpus); and

3. unsupervised learning methods extracting their knowledge from raw unannotated

data.

As regards ML attempts, one of the first pioneers was Riley [121] who employed

decision-tree learners to classify full stops. He utilized mainly lexical features (such

as word length or case) to compute the probability of a word being sentence-initial

or sentence-final. Next, Palmer et al. presented [122] the SATZ system, employing

supervised learning algorithms. Since this tool can be easily adjusted through surface

and syntactic features, it has been successfully applied to several European languages.

Further on, the maximum entropy learning approach was used as well to the task by

Reynar and Ratnaparkhi [123]. Their system classifies tokens containing ‘.’, ‘?’ or

‘!’ characters utilizing contextual features and abbreviation lists. Recently, a similar

approach has been presented by Gillick [124] for English, using support vector machines

and resulting in state-of-the-art performance.

Beside machine learning approaches, rule-based methods are also commonly applied

for these tasks. E.g. Mikheev introduced [125] a small set of rules for detecting

sentence boundaries (SB) with a high accuracy. In another system presented of him

1In the case of alphabetic writing systems.
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4.2 Segmenting texts of electronic health records

[119], the latter method is integrated into a PoS tagging framework enabling the

classification of punctuation marks. In doing so, they can be labeled as sentence

boundaries, abbreviations or both. Moving on, Kiss and Strunk have introduced [40] an

unsupervised method for sentence boundary detection in 2009. Their tool, Punkt uses

scaled log-likelihood ratio for deciding whether a (word, full stop) pair is a collocation

or not.

Although tokenization and SBD tasks are well established fields of natural language

processing, there are only a few attempts aiming medical texts. These sentence

segmentation attempts fall into two classes: some develop rule-based systems (e.g.

[126]), while most of the studies employ supervised machine learning algorithms (such

as [127, 128, 24, 129, 130]). Latter approaches usually train maximum entropy or CRF

learners, thus large handcrafted training corpora are essential.

Training data used are either domain-specific or general. In practice, domain-specific

knowledge yield better performance, however Tomanek et al. [131] argue on using only

a general-purpose corpus. Their results indicate that the domain of the training corpus

is not critical (at least for German).

As regards Hungarian, there are only two tools available. Huntoken [83] is an open

source system based on Mikheev’s system, while magyarlanc [32] has an adapted

version of MorphAdorner’s rule-based tokenizer [132] and sentence splitter. Both of

them employ general-purpose methods utilizing language- and domain-specific rules

and dictionaries.

This study introduces new methods for segmenting Hungarian clinical texts. For

this, special properties of the target domain is investigated first by creating a manually

segmented corpus. Then, a method is presented which combines high precision rules

with unsupervised learning.
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4.2 Segmenting texts of electronic health records

4.2.2 Evaluation metrics

There is no metric commonly used to measure segmentation methods, therefore we

review existing ones. On the one hand, researchers specializing in machine learning

approaches prefer to calculate precision, recall and F-score. However, these measures

are often used for computing the correctness of sentence boundaries only. On the other

hand, studies on speech recognition prefer to compute NIST and Word Error Rate.

Recently, Read et al. have reviewed [23] the state-of-the-art of text segmentation

proposing a unified metric to compare different approaches. Their method allows

measuring sentence boundaries at any position labeling characters as sentence-finals

or non sentence-finals. In doing so, simple accuracy measures the performance.

Our study builds on their results [23] adapting it to the full segmentation task

of Hungarian clinical texts. In that way, we consider the corpus as a sequence of

characters and empty strings and treat text segmentation as a single classification

problem. Therefore, all the entities (either characters or empty string between them)

can be labeled with one of the following tags:

⟨T⟩ – if the entity is a token boundary,

⟨S⟩ – if it is a sentence boundary,

⟨None⟩ – otherwise.

This classification scheme enables us to calculate accuracy of the unified segmentation

task. Moreover, it allows computing further common metrics as well.

Since it is important to measure each subsystem’s correctness, precision and recall

were calculated for both word tokenization and sentence boundary detection. Further on,

word segmentation was evaluated with F1, while F0.5 was computed for the SBD task.

(The latter calculation makes precision more important than recall.) We employed the

latter metric, because an erroneously split sentence may cause information loss, while

statements might still be extracted from longer multi-sentence text.
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4.2.3 Clinical texts used

A gold standard corpus of clinical texts was collected and manually corrected in order

to develop and evaluate segmentation approaches. This process involved several steps

involving normalization, as such texts are full with diverse mistakes. In doing so, we

had to deal with the following types of errors2:

1. doubly converted characters, such as ‘&amp;gt;’,

2. typewriter problems (e.g. ‘1’ and ‘0’ is written as ‘l’ and ‘o’),

3. dates and date intervals being in various formats with or without necessary

whitespaces (e.g. ‘2009.11.11’, ‘06.01.08’),

4. missing whitespaces between tokens usually introduced various types of errors,

such as:

(a) measurements were erroneously attached to quantities (e.g. ‘0.12mg’),

(b) lack of whitespace around punctuation marks (e.g.

‘töröközegek.Fundus:ép.’),

5. various formulation of numerical expressions.

To investigate possible pitfalls, the gold standard data is split into two parts of equal

sizes: a development and a test set containing 1,320 and 1,310 sentences respectively.

The first part was used to identify typical problems and to develop the segmentation

methods, while the second one was employed to evaluate the results.

As initial step, the distributions of abbreviations, punctuation marks and

capitalization is investigated in these texts to reveal possible difficulties. Comparing

our data with a corpus of general Hungarian (Szeged Corpus [27]) uncovers numerous

discrepancies:

1. 2.68% of tokens found in the clinical corpus sample are abbreviations while the

same ratio for general Hungarian is only 0.23%;
2Text normalization steps were carried out employing regular expressions.
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2. sentences taken from the Szeged Corpus almost always end in a sentence

final punctuation mark (98.96%), while these are totally missing from clinical

statements in 48.28% of the cases;

3. sentence-initial capitalization is a general rule in Hungarian (99.58% of the

sentences are formulated properly in the Szeged Corpus), but its usage is not

common in the case of clinicians (12.81% of the sentences start with a word that

is not capitalized);

4. the amount of numerical data is notable in medical records (13.50% of sentences

consist exclusively of measurement data and abbreviations), while text taken from

the general domain rarely contains statements that are full of measurements.

4.2.4 Segmentation methods

Our system is built up from several components (cf. Figure 4.1). First, a symbolic

method (referred as the baseline) marks word and sentence boundaries3 seeking for

full stops. Then, an unsupervised filtering method extends its output. Finally, rules

employing capitalization yields further sentence boundaries.

Figure 4.1 The architecture of the proposed method

4.2.4.1 Rule-based word tokenization and sentence segmentation

Our baseline method is composed of two parts. First, it tokenizes words (BWT)

using regular expressions implemented in standard tokenizers. However, this algorithm

does not try disambiguate all tokens containing periods, as it would need the proper

recognition of domain-specific abbreviations as well.

3Rules and heuristics used are formulated investigating the development corpus.
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Further on, sentence segmentation (BSBD) is carried out minimizing information

loss (as described in section 4.2.2). In that way, the method tries to avoid of making

false-positive errors by splitting sentences only if there is a high confidence of success.

We found that such cases are, when:

1. a period or exclamation mark directly follows another punctuation mark4;

2. a line starts with a full date, and is followed by other words (The last white-space

character before the date is marked as a sentence boundary (SB).);

3. a line begins with the name of an examination followed by a semicolon and a

sequence of measurements.

Realization of these simple observations yield 100% precision and 73.38% recall on

tokenization considering the development set. The corresponding values for detecting

ends of sentences are 98.48% and 42.60% respectively. As less than half of the

sentence boundaries are discovered, this method needs further improvements. In

addition, a deeper analysis unfolded that the tokenization module has difficulties only

with sentence final periods. We found that these sorts of errors are effects of the

conservative tokenization algorithm, which left several words with punctuation mark

attached ambiguous.

4.2.4.2 Unsupervised sentence boundary classification

In order to enhance the baseline method we considered investigating two kinds of

indicators that are usually employed in such scenarios:

Periods: when a punctuation mark (•) is attached to a word, a sentence boundary is

found for sure only if the token is not an abbreviation.

Capitalization: if a word starts with a capital letter and it is neither part of a proper

name nor of an acronym, it indicates the beginning of a sentence.

4Question marks are not considered as sentence-final punctuation marks, since they generally indicate
a questionable finding in clinical texts.
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Considering our case:

1. clinicians introduce new abbreviations frequently which are not part of the

standard, therefore a proper list cannot be collected easily, further on,

2. Latin words, abbreviations and subclauses are sometimes capitalized by mistake,

thus they are neither reliable information sources.

In addition, numerous sentence boundaries lack both of these indicators (as shown in

Section 4.2.3).

Even though these features do not function regularly, they can still be utilized. It is

enough to find evidence for the separateness of a word and the subsequent full stop to

classify a position as a sentence boundary. For this, we employed the idea of Kiss and

Strunk [40] and adapted it for clinical texts.

The log-likelihood ratio method was first applied to identify collocations [39],

however, Kiss and Strunk managed to adjust it for the SBD problem recently (cf. [40]).

Their tool, called Punkt, considers abbreviations as collocations of words and periods,

thus evaluating them using a modified log-likelihood ratio. In practice, this is formulated

via a null hypothesis (4.1) and an alternative one (4.2).

H0 : P(•|w) = p = P(•|¬w) (4.1)

HA : P(•|w) = p1 ̸= p2 = P(•|¬w) (4.2)

logλ =−2log
L(H0)

L(HA)
(4.3)

In these formulae, H0 expresses the independence of a (word, •) pair, H1 formulates

that their co-occurrence is not just by chance, while L denotes the likelihood function.

The log-likelihood ratio of the null and alternative hypothesis is measured by the logλ

score (4.3), which is found to be asymptotical to χ2 [39]. However, Kiss and Strunk
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recovered that this simple method performs poorly (in terms of precision) for identifying

abbreviation. Therefore, they adapted the likelihood-ratio test by introducing several

factors for scaling its result [40], and transforming it a heuristic ranking algorithm.

We improved their approach in numerous ways. First of all, the inverse score

(iscore = 1/logλ ) was used as a base, since it helps to find candidates co-occurring

only by chance. Moving on, we introduced further scaling factors reviewing that of

Punkt and adapting them to match the characteristics of the target domain.

First of all, the first factor of the Punkt system cannot be directly applied in our

case. Counts and count ratios alone do not indicate properly alone whether a token and

the period is related in a clinical record, since several sorts of abbreviations occur with

relative low frequencies.

Next, lengths of words (len) was also used in Punkt to indicate abbreviations well.

They could help in our case, since shorter tokens tend to be abbreviations, while longer

ones do not. Therefore, we reformulated the original function to penalize short words

and reward longer ones. Having a medical abbreviation list of almost 200 elements5 we

found that more than 90% of the abbreviations are shorter than three characters. This

fact led us to formulate the scaling factor as in (4.4). In doing so, this enhancement

can also decrease the score of a bad candidate, which distinguishes it from the original

formula of Kiss and Strunk.

Slength(iscore) = iscore · exp(len/3−1) (4.4)

Recently, Humor [29, 30, 31] has been extended with the content of a medical

dictionary [16]. What is more, the analyzer is able indicate whether analyses refers

to abbreviations. Therefore, its output is used to enhance the sentence segmentation

algorithm.

5The list is gathered with an automatic algorithm on the development corpus using word shape
properties and frequencies. The most frequent elements are manually verified and corrected.
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An indicator function was introduced (cf. Equation 4.5) to utilize its output deciding

whether a word can be an abbreviation or not. Since, the morphological lexicon used

is a well-established resource, our application could rely on it with high confidence.

Therefore, the factor formulated (cf. Equation 4.6) uses larger weights compared to

others. This method raises the score of a full word, decreases that of an abbreviation,

while values of unknown words are left as they were.

indicatormorph(word) =


1 if word has an analysis of a known full word

−1 if word has an analysis of a known abbreviation

0 otherwise
(4.5)

Smorph(iscore) = iscore · exp(indicatormorph · len2) (4.6)

Hyphens are generally not present in abbreviations but rather occurs in full words.

Relying on this observation, iscore was adjusted (4.7) with a further indicator function:

indicatorhyphen outputs 1 only if the word contains a hyphen.

Shyphen(iscore) = iscore · exp(indicatorhyphen · len) (4.7)

S = Slength ◦Smorph ◦Shyphen (4.8)

Scaled logλ (cf. S(iscore) in Equation 4.8) is calculated for all (word, •) pairs

not followed by any other punctuation mark. If this value is found to be higher than a

threshold, the period is regarded as a sentence boundary and it is detached.6 Otherwise,

the joint token is treated as an abbreviation.

6Threshold value is empirically set to 1.5.
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To investigate the improvement of our method, it was pipelined with the BSBD

module producing 77.14% recall and 97.10% precision on the development set.

Accuracy values show significant improvements, however they also indicate that many

sentence boundaries are still not found.

4.2.4.3 Rules on capitalization

To further improve the method, capitalization properties of words were also utilized.

We developed a rule-based component to decide whether a capitalized words can start

a sentence or not. Good SB candidates of such tokens are the ones not following a

non sentence terminating7 punctuation, and are not part of a named entity. Therefore,

sequences of capitalized words are considered to be named entities and omitted as a

first step. Then, the rest of the candidates are processed by Humor. We employed a

simple heuristic for detecting sentence boundaries: if a word does not have a proper

noun analysis but is capitalized, it is marked as the beginning of a sentence. Our results

on the development set show that this component also enhances the BSBD: it increases

recall to 65.46% while keeps precision high (96.37%).

4.2.5 Evaluation

Table 4.1 Accuracy of the input text compared with the segmented ones

Accuracy

Raw corpus 97.55%

BSBD 99.11%

+ LLR 99.72%

+ CAP 99.26%

+ LLR + CAP 99.74%

7Sentence terminating punctuation marks are the period and the exclamation mark for this task.
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Evaluation is presented for each components showing their accuracies (cf. Table 4.1).

First, our improvements are compared to both the baseline module (BSBD) and the raw

preprocessed corpus. The unsupervised SBD algorithm is marked with LLR8, while

the last component is indicated by CAP. Results show high accuracies for the overall

segmentation task, furthermore the scores of the raw corpus is relatively high. This

indicates that the metric applied is not well balanced.

Therefore, their improvements are also investigated calculating error rate reduction

ratios (in Table 4.2). Comparison is carried out measuring enhancements over

the baseline method (BSBD) showing that both of the components improves the

segmentation method.

Table 4.2 Error rate reduction over the BSBD baseline method

Error rate reduction

LLR 58.62%

CAP 9.25%

LLR + CAP 65.50%

Considering sentence boundaries only, a more detailed analysis is got by computing

precision, recall and F0.5 values (in Table 4.3). Data shows that each component

significantly increases the recall, while precision is just barely decreased. Finally, the

combined hybrid algorithm9 brings significant improvement over the well-established

baseline.

Table 4.3 Precision, recall and F-score of the proposed sentence segmentation algorithms

Precision Recall F0.5

Baseline 96.57% 50.26% 81.54%

+ LLR 95.19% 78.19% 91.22%

+ CAP 94.60% 71.56% 88.88%

+ LLR + CAP 93.28% 86.73% 91.89%

8Referring to the term log-likelihood ratio.
9It is the composition of the BWT, BSBD, LLR and CAP components.
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While our approach focuses on the sentence identification task, we showed that

it improves word tokenization as well. Table 4.4 presents measurements on word

segmentation indicating that our enhancements resulted in a higher recall, while they

did not decrease precision notably.

Table 4.4 Comparing the tokenization performance of the proposed tool with the
baseline rule-based one

Precision Recall F1

Baseline 99.74% 74.94% 85.58%

Hybrid system 98.54% 95.32% 96.90%

Besides, the proposed method was compared with freely available tools as

well. There are only two applications for Hungarian text segmentation, which are

magyarlanc and Huntoken. The latter system can be slightly adapted to a new domain

by providing a set of abbreviations, thus two versions of it were evaluated. The first one

employs a set of general Hungarian abbreviations (HTG), while the second one utilizes

an extended dictionary10 containing medical ones as well (HTM). Further on, Punkt [40]

and the OpenNLP [82] toolkit11 were also involved in our comparison. The latter tool is

a general framework of maximum entropy methods, hence it could be applied to detect

sentence boundaries as it is presented in [123].

10As described in section 4.2.4.2.
11The general-purpose Szeged Corpus was used as training data for the maximum entropy learning

method.
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Table 4.5 Comparison of the proposed hybrid sentence segmentation method with other
freely available tools

Precision Recall F0.5

magyarlanc 72.59% 77.68% 73.55%

HTG 44.73% 49.23% 45.56%

HTM 43.19% 42.09% 42.97%

Punkt 58.78% 45.66% 55.59%

OpenNLP 52.10% 96.30% 57.37%

Hybrid system 93.28% 86.73% 91.89%

Results in Table 4.5 show that general segmentation methods fail on Hungarian

clinical notes in contrast to our new algorithm. The hybrid approach presented bears

with both high precision and recall, providing accurate sentence boundaries. While it

was found that the maxent approach has decent recall as well, boundaries marked by it

are false positives in almost half of the cases. Further on, rules of magyarlanc seem

to be robust, but the overall low performance inhibits its application for clinical texts.

Finally, other tools do provide not just low recalls, but their precision values are still

around 50% limiting their applicability.

In sum, the presented segmentation method successfully deals with several sorts of

imperfect sentence and word boundaries. It performs better in terms of precision and

recall than competing ones, achieving 92% of F0.5-score. Finally, our results indicates

that the new hybrid algorithm is a proper tool for processing clinical Hungarian.
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4.3 Morphological tagging of clinical notes

Beside text segmentation, morphological tagging is also an indispensable task for

information extraction scenarios. Even though tagging of general texts is well-known

and considered to be solved, medical texts pose new challenges to researchers. In

addition, English has been the main target of many studies investigating the biomedical

domain up to the present time. Furthermore, there are just a few approaches for non-

English data, neglecting agglutinative languages and particularly Hungarian.

This section investigates the tagging of clinical Hungarian by adapting existing

methods. Our work is structured as follows. Related studies are described first, then

a corpus of clinical notes is presented. Finally, domain adaptation enhancements are

introduced which are then evaluated on the test corpus.

4.3.1 Background

In general, tagging of biomedical texts has an extensive literature, since numerous

resources are accessible for English. On the contrary, much less manually annotated

corpora of clinical texts are available. Further on, most of the work in this field was

done for English, while only a few attempts were published for morphologically rich

languages (e.g. [133, 134]).

First of all, a common approach for tagging biomedical text is to train supervised

sequence-classifiers. However, a drawback of these methods is that they require

manually annotated texts which are hard to create. Considering the types of training

material, domain-specific corpora are used either alone [135, 24, 136] or in conjunction

with a (sub)corpus of general English [137, 138, 139]. While utilizing texts only from

the target domain yields acceptable performance [135, 24, 136], several experiments

have shown that accuracy further increases with incorporating annotated sentences from

the general domain as well [140, 137]. It is shown (e.g. [141]) that the more data is

used from the reference domain, the higher accuracy can be achieved. However, Hahn

and Wermter argue for training learners only on general corpora [142] (for German).
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Besides, there are studies on automatic selection of the training data (e. g. [143]). What

is more, there are algorithms (such as [144]) learning from several domains parallelly

thus delaying the model selection decision to the decoding process.

Next, utilization of domain-specific lexicons is another way of adapting taggers, as

they can improve tagging performance significantly [137, 145]. Some studies extend

existing PoS dictionaries [146], while others build new ones [136]. In brief, all such

experiments yield significantly reduced error rates.

Concerning tagging algorithms, researchers tend to prefer already existing

applications. One of the most popular system is the OpenNLP toolkit [82], which is

e.g. the basis of the cTakes system [24]. Further on, TnT [35] is widely utilized (e.g.

[142, 24]), and there are applications of Brill’s method [78] as well (e.g. [141]). Besides,

other HMM-based solutions were also shown to perform well [140, 137, 146, 142, 135,

134, 145] on biomedical texts.

Moving on, a number of experiments have revealed [138, 145, 136] that

domain-specific OOV words are behind the reduced performance of taggers. Therefore,

successful methods employ either guessing algorithms [140, 146, 134, 145, 136] or

broad-coverage lexicons (as detailed above). Beyond supervised algorithms, other

approaches were also shown to be effective: Miller et al. [139] used semi-supervised

methods; Dwinedi and Sukhadeve built a tagger based only on rules [147]; while Ruch

et al. proposed a hybrid system [145]. Further on, automatic domain adaptation methods

(such as EasyAdapt [148], ClinAdapt [138] or reference distribution modelling [149])

also perform well. As a drawback, they need an appropriate amount of manually

annotated data from the target domain limiting their applicability.

Our method builds on a baseline tagging chain composed of a trigram tagger

(introduced in Section 2.2.2) and a broad coverage morphological analyzer. The latter

tool employs a domain-adapted lexicon, while the tagger is adapted to the domain with

further components.

72



4.3 Morphological tagging of clinical notes

4.3.2 The clinical corpus

As there is no corpus of clinical records available manually annotated with

morphological analyses, a new one was created. These texts contain about 600 sentences

extracted from notes of 24 different clinics. First, textual parts of the records were

identified (as described in [13]), then the paragraphs to be processed were selected

randomly. After these, sentence boundary segmentation, tokenization and normalization

was performed manually aided by methods of Section 4.2.4. Manual spelling correction

was carried out relying on the system of Siklósi et al. [117]. Finally, morphological

disambiguation was performed: the initial annotation was provided by PurePos, then its

output was corrected manually.

As regards morphological annotation of texts, clinical notes have special properties

differing from general Hungarian, which have been considered during their analysis.

These texts contain numerous x tokens denoting multiplication, thus they are labeled

as numerals. Latin words and abbreviations dominate sentences, which we decided to

analyze regarding their meaning. For instance, o. denotes szem ‘eye’ thus it is tagged

as a noun (N.NOM). Further on, medicine brand names are common as well, which

were almost always found to be singular nouns. Finally, numerous sentences lack final

punctuation marks that are not recovered in the test corpus.

The manually annotated corpus was split into two parts (cf. Table 4.6) for our

experiments. The first one was employed for development purposes, while new methods

were evaluated on the second part.

Table 4.6 Number of tokens ans sentences of the clinical corpus created

Sentences Tokens

Development set 240 2,230

Test set 333 3,155

These records are created in a special environment, thus they differ from general

Hungarian in several aspects (cf. [8, 118, 13]):
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1. notes contain a lot of erroneously spelled words,

2. sentences generally lack punctuation marks and sentence initial capitalization,

3. measurements are frequent and have plenty of different (erroneous) forms,

4. a lot of (non-standard) abbreviations occur in such texts and

5. numerous medical terms are used originating from Latin.

4.3.3 The baseline setting and its most common errors

We built a baseline chain and analyzed its errors to improve the overall annotation

quality. It uses the Humor analyzer, which produces (morpho-syntactic tag, lemma)

pairs as analyses. (The output of the MA is extended with the new analysis of the x

token to fit the corpus to be tagged.) Further on, analysis candidates are disambiguated

by PurePos that is trained on the transcribed Szeged Corpus (as described in 2.2.3.1).

This baseline tagger produces 86.61% token accuracy12 on the development set,

which is remarkably lower than tagging results for general Hungarian using the same

components (96–98% as in [6, 32]). Further on, sentence-based accuracy scores

shows that less than the third (28.33%) of the sentences were tagged correctly. This

fact indicates that the models of the baseline algorithm alone are weak for this task.

Therefore, we investigated the most common errors of the chain.

Table 4.7 Distribution of the most frequent error types caused by the baseline algorithm
(measured on the development set)

Source of errors Frequency Ratio

Abbreviations and acronyms 119 49.17%

Out-of-vocabulary words 66 27.27%

Domain-specific PoS of word forms 36 14.88%

12Accuracy is calculated considering correct full analyses of tokens, not counting punctuation marks.
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Table 4.7 shows that the top error class is composed of mistagged abbreviations and

acronyms. A reason for this is that most of the abbreviated tokens are previously not seen

by the tagger. Therefore, their labels are produced by the tool’s guesser module, which

is not prepared for handling such tokens. What is more, these abbreviations usually

refer to medical terms (and their inflected forms) originating from Latin, thus differing

notably from standard ones.

Another class of mistakes was caused by out-of-vocabulary words. These are

specific to the clinical domain and often originate from Latin. Although this observation

is in accordance with the PoS tagging results for medical English, listing of such terms’

analyses is not a satisfactory solution to the problem, since the number of inflected forms

is significantly larger compared to English.

Finally, domain-specific usage of some words leads the tagger astray as well. An

example is the class participles which are mislabeled as past tense verbs. E.g. javasolt

‘suggested’ and felírt ‘written’ are common words in the corpus, but have different PoS

tag distributions in this domain. Further on, several erroneous tags are due to the lexical

ambiguity being present in Hungarian (such as szembe which can refer to ‘into an eye’

or ‘toward/against’).

Based on the classification of errors above, domain-adaptation techniques were

introduced enhancing the overall accuracy of the chain.

4.3.4 Domain adaptation experiments

4.3.4.1 Utilizing an extended morphological lexicon

Supervised tagging algorithms commonly use augmented lexicons reducing the number

of out-of-vocabulary words (see Section 4.3.1). In the case of Hungarian, this must be

performed at the level of the morphological analyzer, since inflection is a momentous

phenomenon. Extension of the lexicon was carried out by Attila Novák [15] adding

40,000 different lemmata to the analyzer. For this, he used a spelling dictionary of

medical terms [150] and a freely available list of medicines [151]. By employing the

enhanced lexicon, the ratio of OOV words was reduced to 26.19% (from 34.57%) that
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also improved the overall accuracy to 92.41% (on the development set). Further on,

the medical dictionary [150] used contained numerous abbreviated tokens as well, thus

the usage of the augmented analyzer also helped to decrease the number of mistagged

abbreviations.

4.3.4.2 Dealing with acronyms and abbreviations

Despite improvements above, numerous errors made by the enhanced tagger were still

connected to abbreviations. Thus, we investigated the erroneous tags of abbreviated

terms first, then methods were introduced for improving the performance of the

disambiguation chain.

A detailed examination revealed that some erroneous tags were due to the

over-generating nature of Humor. To fix such problems, we applied a simple filtering

method. An analysis of a word with an attached full stop was considered to be a false

candidate if the lemma candidate is not an abbreviation. Consequently, the overall

accuracy was increased notably, reducing the number of errors on the development set

by 9.20%.

Another typical error type was the mistagging of unknown acronyms. Since PurePos

did not employ features dealing with such cases, these tokens were usually left to the

suffix guesser resulting in incorrect annotation. In addition, our investigation shows that

acronyms should be tagged as singular nouns in most of the cases. To annotate them

properly, a pattern matching component was developed relying on surface features.

Finally, the rest of the errors were connected to those abbreviations which were both

unknown to the analyzer and had not been seen previously. Therefore, the abbreviations

labels was compared to that of the Szeged Corpus (see Table 4.8 below). While there are

common properties between the two datasets (such as the ratio of adverbs), discrepancies

are more significant. The most important difference is the proportions of adjectives: it

is notably higher in the medical domain than in general Hungarian. Moreover, these

values are more expressive if we consider that 10.85% of the tokens are abbreviated in

the development set, while the same ratio is only 0.37% in the Szeged Corpus.
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Table 4.8 Morpho-syntactic tag frequencies of abbreviations on the development set

Tag Clinical texts Szeged Corpus

N.NOM 67.37% 78.18%

A.NOM 19.07% 3.96%

CONJ 1.27% 0.50%

ADV 10.17% 11.86%

Other 2.12% 5.50%

Since the nominal noun tag is the most frequent amongst abbreviations, a plausible

method (“UnkN”) was to assign the N.NOM label to unknown ones. Meanwhile, we kept

the original word forms as lemmata. Although this approach is rather simple, it resulted

in a surprisingly high (31.54%) error rate reduction (cf. Table 4.9).

Table 4.9 Accuracy scores of the abbreviation handling improvements on the
development set

ID Method Accuracy

0 Medical lexicon 90.11%

1 0 + Filtering 91.02%

2 1 + Acronyms 91.41%

3 2 + UnkN 94.12%

4 2 + UnkUni 92.82%

5 2 + UnkMLE 94.01%

Next, we tried to approximate the analyses of abbreviations with the distribution of

tags observed in Table 4.8. First, we utilized (“UnkUni”) a uniform distribution over

their labels. The labels A.NOM, A.PRO, ADV, CONJ, N.NOM, V.3SG and V.PST_PTCL

were used with equal probability as a sort of guessing algorithm.

Beside these, another reasonable method was to employ maximum likelihood

estimation for calculating a priori probabilities of labels (“UnkMLE”). In that way,

relative frequency estimates were computed for all the tags enlisted above.
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Comparing the performance of these enhancements (cf. Table 4.9), we found

that this approach can also increase the overall performance, but the simple “UnkN”

performs the best. This can be due to the fact that the data available could be insufficient

for estimating probability distribution of labels properly.

4.3.4.3 Choosing the proper training data

Since many studies showed (cf. Section 4.3.1) that the training data set significantly

affects the result of a data-driven annotation chain, we investigated sub-corpora of the

Szeged Corpus. Several properties (cf. Table 4.10) were examined13 to find a decent

domain to learn from for tagging clinical Hungarian.

Table 4.10 Comparing Szeged Corpus with clinical texts calculating average lengths of
sentences, ratio of abbreviations and unknown words and perplexity regarding words
and tags

Corpus
Avg. sent. Abbrev. Unknown Perplexity

length ratio ratio Words Tags

Szeged Corpus 16.82 0.37% 1.78% 2318.02 22.56

Fiction 12.30 0.10% 2.44% 995.57 32.57

Compositions 13.22 0.14% 2.29% 1,335.90 30.78

Computer 20.75 0.14% 2.34% 854.11 22.89

Newspaper 21.05 0.20% 2.10% 1,284.89 22.08

Law 23.64 1.43% 2.74% 824.42 29.79

Short business news 23.28 0.91% 2.50% 859.33 27.88

Development set 9.29 10.85% – – –

First of all, an important attribute of texts is the length of sentences. Shorter

sentences tend to have simpler grammatical structure, while longer ones are

grammatically more complex. Further on, clinical texts have a vast amount of

abbreviations, thus their ratio can also serve as a relevant metric. In addition, the
13Measurements regarding the development set were calculated manually where it was necessary.
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accuracy of a tagging system depends on the ratio of unknown words heavily, therefore

their proportions were calculated. For this, we measured the ratio of OOV words on the

development set.

Perplexity was also computed, since it can measure similarities of texts [152]. The

calculation was carried out as follows: trigram models of word and tag sequences were

trained on each corpus using Kneser-Ney smoothing, then all of them were evaluated on

the development set14.

Our examination shows that neither part of the Szeged Corpus contains as much

abbreviated terms as clinical texts have. Likewise, sentences written by clinicians are

significantly shorter than those of the Szeged Corpus. Neither the calculations above, nor

the ratio of unknown words suggests using any of the subcorpora for training. However,

the perplexity scores contradict: sentences from the law domain share the most phrases

with clinical notes, while news texts have the most similar grammatical structures.

Table 4.11 Evaluation of the tagger on the development set trained with domain-specific
subcorpora of the Szeged Corpus

Corpus Morph. disambiguation accuracy

Szeged Corpus 94.73%

Fiction 92.01%

Compositions 91.97%

Computer 92.73%

Newspaper 93.29%

Law 92.17%

Short business news 92.69%

Since similarity measurements were not in accordance with each other, all

sub-corpora were tested as training data for tagging clinical texts. (These experiments

were performed using the previously enhanced tagging chain.) The accuracy scores of

14We used the SRILM toolkit [153] for training models and measuring perplexity.
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taggers (cf. Table 4.11) on the development set show that training on a subcorpus cannot

improve the performance. Therefore, we decided to use the whole Szeged Corpus to

train our system.

4.3.5 Evaluation

The improved chain (cf. Table 4.12) was evaluated by investigating the part-of-speech

tagging, lemmatization and the whole morphological annotation performance.

Table 4.12 Accuracy of the improved tagger on the test set

ID Method PoS tagging Lemmatization Morph. disambig.

0 Baseline system 90.57% 93.54% 88.09%

1 0 + Lexicon extension 93.89% 96.24% 92.41%

2 1 + Handling abbreviations 94.81% 97.60% 93.73%

First of all, results show that the baseline method annotated almost 12% of the tokens

erroneously, while our enhancements raised the ceiling of the full morphological tagging

accuracy to 93.73%. Therefore, we managed to eliminate almost half (47.36%) of the

errors. Next, accuracy scores also indicate that the error rate reduction is mainly due to

the extended lexicon. However, the better handling of abbreviations also increased the

performance significantly (Wilcoxon test of paired samples, p < 0.05). Therefore, our

improvements yielded a system having satisfactory performance for morphologically

parsing clinical texts.

This study revealed that abbreviations and out-of-vocabulary words cause the

most of the errors for tagging Hungarian clinical texts. We introduced numerous

enhancements dealing with them, although not all of them were successful. This could

be due to the small amount of annotated data used inhibiting the better modeling of the

domain.
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5.1 New scientific results

I Effective morphological tagging methods for morphologically rich

languages

Full morphological tagging is a complex task composed of two parts. Beside identifying

morpho-syntactic tags, lemmata of words must be computed as well. While the first task

is a well-known problem of natural language processing, the latter one is often neglected.

Results are summarized by describing the new lemmatization method first, followed by

the full tagging systems.

THESIS I.1. I developed a new lemmatization method for agglutinative

languages. The presented algorithm is based on the output of a

morphological analyzer. It can handle both known and unknown words

effectively by incorporating diverse stochastic models. Results presented

show that the new system has high accuracy on Hungarian texts.

Publications: [18, 17, 10, 8]
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The proposed algorithm performs lemmatization in two steps. First, it uses a

morphological analyzer and a guesser component to generate lemma candidates, then

disambiguation is performed using stochastic models. The latter part is carried out

calculating the score (S) of each lemma (l) for a given word (w) and tag (t) using the

interpolation of two different models:

S(l|w, t) = P(l)λ1P(l, t|w)λ2 (5.1)

The system combines a simple unigram model with the output of a suffix-based

guesser. To calculate the lambda parameters, guesses of models are evaluated on the

training data, then the better model’s score gets increased while that of the worse one is

decreased.

Several experiments have been presented on the Szeged Corpus showing that the

proposed method has superior accuracy for Hungarian compared to other available tools.

— •—

THESIS I.2. I designed a hybrid morphological tagging system (PurePos1)

for less-resourced and agglutinative languages. The method relies on

stochastic methods incorporating the output of a morphological analyzer.

Its lemmatization component utilizes algorithms presented in Thesis I.1.

Furthermore, the tool is built up in a way to be able to incorporate

domain-specific rules effectively. Experiments confirm its state-of-the-art

accuracy for Hungarian and resource-scare scenarios.

Publications: [18, 17, 10, 8]

The architecture of PurePos (cf. Figure 5.1) is built up to allow multiple models

cooperating effectively. The disambiguation is carried out in multiple steps. The

data flow starts from a MA providing word analyses as (lemma, tag) pairs. Next,

1The presented system is open source and is freely available at https://github.com/ppke-nlpg/purepos
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Figure 5.1 The architecture of the full morphological tagging tool

trigram-tagging methods (see [35, 36]) are employed for selecting morpho-syntactic

labels of words. Finally, lemmatization is carried out employing the methods presented

in Thesis I.1.

Figure 5.2 Learning curves of full morphological taggers on the Szeged Corpus (using
Humor labels)

Several experiments were carried out measuring the performance of PurePos on the

Szeged Corpus [27]. Results show that the new method yields very high (96.26%) full

tagging accuracy on Hungarian. Moving on, I also compared existing tagging systems

with the presented one on a less-resourced scenario. These experiments showed (cf.

Figure 5.2) that PurePos can be successfully used even when the training dataset is

limited. Finally, all the hybrid enhancements of PurePos ware evaluated one-by-one,

showing that they can be used to fix several sorts of errors.

— •—

83



5.1 New scientific results

Although, methods of Thesis group I.2 have high accuracy, it was shown that they

can be improved further. Therefore, a combination technique is presented increasing the

ceiling of morphological tagging tools’ performance for agglutinative languages.

THESIS I.3. I developed a methodology for combining morphological

tagging systems effectively. The system presented selects the best lemma

and tag candidates separately using two different combination methods.

These components are trained with cross-validation using instance based

learning. I showed that my method can significantly reduce the number

of errors of existing annotation tools.

Publications: [20, 9, 5]

First of all, discrepancy of tagging systems was analyzed. For this, I designed a new

metric (Own Error Rate) which measures the differences of output of taggers. It turned

out that the most typical mistakes of HuLaPos [7] and PurePos are different enough to

be aggregated.

Following this, the most common combination techniques were investigated

considering their applicability to full morphological tagging. Next, a new combination

method was presented involving adapted feature sets for a morphologically rich

language. It utilizes instance based learning [37] and trains classifiers with

cross-validation, which can employ the whole training dataset for both the baseline tools

and the level-one learners. The novelty of the presented method is its architecture (cf.

Figure 5.3) which allows us to utilize different combiners for the lemmatization and PoS

tagging subtasks.
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Figure 5.3 Combining the output of two PoS taggers and lemmatizers

Finally, evaluation experiments were presented indicating that the number errors of

the best tagger can be decreased further. The new algorithm could reduce the number of

errors of PurePos by 28.90%.

II Measuring morpho-syntactic complexity using morphological

annotation algorithms

Measuring morpho-syntactic complexity is usually carried out calculating mean length

of utterances. This metric is often computed in words for analytical languages, while

morphemes (MLUm) are used for morphologically complex ones. Although automatic

methods and tools exist for e.g English, other less-resourced languages lack such

systems. Therefore, MLUm could be only computed manually, which is a rather

time-consuming task.

This thesis group presents2 methods for processing speech transcripts effectively and

estimating mean length of utterance in morphemes automatically.

THESIS II.1. I developed a hybrid morphological tagging chain for

Hungarian child-language transcripts. My method builds on top of the

results presented in Thesis I.2 by adapting them to the domain. Evaluation
2This research has been conducted together with Kinga Jelencsik-Mátyus. My contributions are the

construction of the tagging chain, its adaptation and the automatization of the MLUm calculation.
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shows that performance of the method is comparable with that of tagging

methods for written corpora. Moreover, experiments indicate that the

algorithm presented is accurate enough to be used in further applications.

Publications: [2, 4]

The proposed method adapts the algorithms introduced in Thesis I.2 for spoken

Hungarian. For this, the Humor morphological analyzer was augmented first with

analyses of words typical to the domain. Next, the output of PurePos was adjusted

utilizing domain-specific knowledge.

For this, a gold corpus of about 1,000 utterances from the HUKILC was created

by the manual annotation of texts. Additionally, a new tagging scheme was designed

representing the characteristics of spoken language properly.

The evaluation of the chain resulted in 96% token-level precision, which is

comparable with that of taggers for corpora of written language. Therefore, my

investigation showed that PurePos is an appropriate base for tagging corpora of

transcribed spoken texts.

— •—

THESIS II.2. I proposed a new algorithm for estimating morpho-syntactic

complexity (calculating mean length of utterance in morphemes)

in Hungarian child language transcripts. The method uses the

morphological tagging chain of Thesis II.1 as a base. Evaluation of the

system indicates that the methodology presented can properly replace the

time-consuming manual computation of human annotators.

Publications: [2, 4]

The estimation method analyzes morphological annotations of tokens. Words known

by the analyzer are decomposed by Humor, while lengths of unknown words are guessed

based on their PoS labels. This is followed by morpheme counting rules implementing

linguistic guidelines, thus providing relevant estimates.
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As regards resources, a manually checked corpus was created for the experiments.

Evaluation of the methods on this dataset shows that my results highly correlate (0.9901)

with counts of human annotators. Further on, I showed that the mean relative error

of the method is only 4.49%. Thus, the proposed algorithm can properly replace the

labor-intensive human computation.

III Effective preprocessing methods for a less-resourced noisy

domain

More and more electronic health records are produced in hospitals containing valuable

but hidden knowledge. Since doctors cannot spend enough time on writing their reports

properly, notes often contain numerous errors. Because of such mistakes, processing of

these texts cannot be carried out using general-purpose tools. Moreover, while several

algorithms are becoming available for English, Hungarian and other morphologically

rich languages are still neglected.

THESIS III.1. I developed a new framework which segments noisy clinical

records into words and sentences accurately. The method is built on top

of well-known tokenization rules (e.g. [83]), however, it augments them

with unsupervised heuristics. Evaluations showed that the algorithm can

properly identify word and sentence boundaries in noisy clinical notes.

Results also indicate that other systems available cannot handle such

erroneous texts.

Publications: [5, 14, 3]

Figure 5.4 The architecture of the proposed method
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The proposed method builds on pattern-matching algorithms taken from

general-purpose tokenization tools. Even though these methods perform with high

accuracy, their recall still stays low. Therefore, this study proposes a method (see

Figure 5.4) which improves their performance using unsupervised heuristics and a

domain-specific morphologic analyzer. First, the scaled logλ method [40] was adapted

by introducing new scaling factors. Next, the Humor morphological analyzer was

utilized to reveal further sentence boundaries.

The evaluation of the framework was carried out on a manually segmented corpus.

Numerous metrics (such as precision, recall, F-score) were employed measuring the

performance of the proposed tool. Moreover, existing Hungarian approaches were also

compared with the proposed one.

Results show that other systems available can only produce low quality

segmentation. Most of them yields F-scores less than 50% in sentence boundary

identification. On the contrary, the method proposed can detect both token and sentence

boundaries accurately, producing F-values over 90%.

— •—

THESIS III.2. I showed that tagging methods of Thesis I.2 can be applied

for annotating electronic health records satisfactorily. In doing so,

PurePos was adjusted with stochastic and symbolic domain adaptation

techniques. The quality of the annotation produced is comparable with

that of general written tagger tools.

Publications: [16, 1, 3]

First of all, an extended version of the Humor analyzer was used as a base of the

tagging chain, since it was prepared3 for electronic health records. Further on, the

tagging chain was improved using a detailed error analysis of the baseline tagger.

3The lexicon extension was carried out by Attila Novák [15] .
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For this, a manually annotated corpus was created containing texts of clinical notes.

Results on this dataset show that the improved system performs significantly better

(93.73%) than the baseline system (88.09%). However, future work might target the

segmentation and tagging tasks with a unified framework, since both systems have the

most problems with abbreviated terms.

5.2 Applications

The methods presented here solve basic preprocessing tasks such as text segmentation

and morphological tagging. Since these are essential components of any language

processing chain, our results can be applied in numerous fields of natural language

technology. In general, text mining solutions and information extraction tools utilize

such algorithms. Since our methods aim morphologically rich and less-resourced

languages (and especially Hungarian), they can be used to boost tasks involving such

languages.

Concerning general tagging methods of Theses I.1 and I.2, they have been

successfully applied in several Hungarian projects. Their applications involve the

following studies:

1. Laki et al. [7] have developed an English to Hungarian morpheme-based statistical

machine translation method using PurePos,

2. Novák et al. [12] have annotated Old and Middle Hungarian texts employing our

methods,

3. Endrédy et al. [154] have proposed a noun phrase detection toolkit utilizing the

morphological tagging tool presented,

4. Indig and Prószéky have applied [155] the proposed tagger tool for a batch

spelling-correction tool and

5. Prószéky et al. [156] have built their psycho-linguistically motivated parser on top

of PurePos.
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Next, Thesis group II presents methods and resources for analyzing transcripts of

spoken language which can serve NLP applications of the domain. Besides, methods

of Thesis II.2 estimate morpho-syntactic complexity of children language, thus can

replace the labor-intense manual work. Furthermore, Jelencsik-Mátyus utilizes [157]

these algorithms in her research investigating the language development of Hungarian

kindergarten children.

Finally, the last (III) Thesis group details methods for processing noisy texts

effectively. Algorithms of Thesis III.1 segment clinical texts accurately, providing

proper output for information extraction applications. Furthermore, lessons learned

from our tagging methods could help the development of accurate text mining tools in

the target domain. Besides, an ongoing project [158, 159, 3] on processing Hungarian

electronic health records benefits from the proposed methods.
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